首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
We investigate the Ricci Dark Energy (RDE) in the braneworld models with a Gauss–Bonnet term in the Bulk. We analytically solve the generalized Friedmann equation on the brane and find that the universe will finally enter into a pure de Sitter spacetime in stead of the big rip that appears in the usual 4D Ricci dark energy model with parameter α<1/2α<1/2. We also consider the Hubble horizon as the IR cutoff in holographic dark energy model and find it cannot accelerate the universe as in the usual case without interacting.  相似文献   

2.
We investigate the modified Chaplygin gas (MCG) with interaction between holographic dark energy proposed by Li and dark matter. In this model, evolution of the universe is described in detail, which is from deceleration to acceleration. Specifically, the evolutions of related cosmological quantities such as density parameter, the equation of state of holographic dark energy, deceleration parameter and transition redshift are discussed. Moreover, we also give their present values which are consistent with the lately observations. Furthermore, the results given by us show such a model can accommodate a transition of the dark energy from a normal state wx 〉 -1 to ωx 〈 -1 phantom regimes.  相似文献   

3.
We investigate observational constraint on the variable generalized Chaplygin gas (VGCG) model as the unification of dark matter and dark energy by using the Union supernovae sample and the baryon acoustic oscillations data. Based on the best fit parameters for VGCG model it is shown that the current value of equation of state for dark energy is w0de=−1.08<−1, and the universe will not end up with big rip in the future. In addition, we also discuss the evolution of several quantities in VGCG cosmology such as deceleration parameter, fractional density parameters, growth index and sound speed. Finally, the statefinder diagnostic is performed to discriminate the VGCG with other models.  相似文献   

4.
We examined the interacting holographic dark energy model in a universe with spatial curvature. Using the near-flatness condition and requiring that the universe is experiencing an accelerated expansion, we have constrained the parameter space of the model and found that the model can accommodate a transition of the dark energy from ωD>−1ωD>1 to ωD<−1ωD<1.  相似文献   

5.
Considering the power-law corrections to the black hole entropy, which appear in dealing with the entanglement of quantum fields inside and outside the horizon, the holographic energy density is modified accordingly. In this paper we study the power-law entropy-corrected holographic dark energy in the framework of Brans-Dicke theory. We investigate the cosmological implications of this model in detail. We also perform the study for the new agegraphic dark energy model and calculate some relevant cosmological parameters and their evolution. As a result we find that this model can provide the present cosmic acceleration and even the equation of state parameter of this model can cross the phantom line w D =−1 provided the model parameters are chosen suitably.  相似文献   

6.
We present a generalized version of holographic dark energy arguing that it must be considered in the maximally subspace of a cosmological model. In the context of brane cosmology it leads to a bulk holographic dark energy which transfers its holographic nature to the effective 4D dark energy. As an application we use a single-brane model and we show that in the low energy limit the behavior of the effective holographic dark energy coincides with that predicted by conventional 4D calculations. However, a finite bulk can lead to radically different results.  相似文献   

7.
We investigate canonical, phantom and quintom models, with the various fields being non-minimally coupled to gravity, in the framework of holographic dark energy. We classify them and we discuss their cosmological implications. In particular, we examine the present value of the dark energy equation-of-state parameter and the crossing through the phantom divide, and we extract the conditions for a future cosmological singularity. The combined scenarios are in agreement with observations and reveal interesting cosmological behaviors.  相似文献   

8.
A generally parameterized equation of state (EOS) is investigated in the cosmological evolution with bulk viscosity media modelled as dark fluid, which can be regarded as a unification of dark energy and dark matter. Compared with the case of the perfect fluid, this EOS has possessed four additional parameters, which can be interpreted as the case of the non-perfect fluid with time-dependent viscosity or the model with variable cosmological constant. From this general EOS, a completely integrable dynamical equation to the scale factor is obtained with its solution explicitly given out. (i) In this parameterized model of cosmology, for a special choice of the parameters we can explain the late-time accelerating expansion universe in a new view. The early inflation, the median (relatively late time) deceleration, and the recently cosmic acceleration may be unified in a single equation. (ii) A generalized relation of the Hubble parameter scaling with the redshift is obtained for some cosmology interests. (iii) By using the SNe Ia data to fit the effective viscosity model we show that the case of matter described by p=0p=0 plus with effective viscosity contributions can fit the observational gold data in an acceptable level.  相似文献   

9.
The Sandage-Loeb(SL) test is a promising method for probing dark energy because it measures the redshift drift in the spectra of Lyman-α forest of distant quasars, covering the "redshift desert" of 2 z 5, which is not covered by existing cosmological observations. Therefore, it could provide an important supplement to current cosmological observations. In this paper, we explore the impact of SL test on the precision of cosmological constraints for two typical holographic dark energy models, i.e., the original holographic dark energy(HDE) model and the Ricci holographic dark energy(RDE) model. To avoid data inconsistency, we use the best-fit models based on current combined observational data as the fiducial models to simulate 30 mock SL test data. The results show that SL test can effectively break the existing strong degeneracy between the present-day matter density ?_(m0) and the Hubble constant H0 in other cosmological observations. For the considered two typical dark energy models, not only can a30-year observation of SL test improve the constraint precision of ?_(m0) and h dramatically, but can also enhance the constraint precision of the model parameters c and α significantly.  相似文献   

10.
Recently a lot of attention has been given to building dark energy models in which the equation-of-state parameter w   can cross the phantom divide w=−1w=1. However, to our knowledge, these models with crossing the phantom divide only provide the possibility that w can cross −1. They do not answer another question: why crossing phantom divide occurs recently? Since in many existing models whose equation-of-state parameter can cross the phantom divide, w undulates around −1 randomly, why are we living in an epoch  w<−1w<1? This can be regarded as the second cosmological coincidence problem. In this Letter, we propose a possible approach to alleviate this problem within a hybrid dark energy model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号