首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
By using a piece of GaAs wafer as the saturable absorber, the performance of the passively Q-switched composite Nd:YVO4 laser with different output couplers has been demonstrated for the first time as far as we know. The largest continuous wave output power of 1.52 W is obtained at the incident pump power of 5.31 W, giving an optical conversion efficiency of 28.7% and a slope efficiency of 30.2%. The shortest pulse width of 11 ns, the largest single-pulse energy of 2.49 μJ and the highest peak power of 190 W are also obtained.  相似文献   

2.
Singh  Manoj K.  Hashmi  S. A. 《Ionics》2017,23(10):2931-2942

We report the studies on quasi-solid battery-supercapacitor (BatCap) systems fabricated using sol–gel-prepared LiFePO4 and its composites (LACs) with activated charcoal (AC) as hybrid cathode and Li4Ti5O12 powder as anode separator by flexible gel polymer electrolyte (GPE) film. The GPE film comprises 1.0 M lithium trifluoromethane sulfonate (LiTf) solution in ethylene carbonate (EC)–propylene carbonate (PC) mixture, immobilized poly(vinylidene fluoride-co-hexafluoro-propylene) (PVdF-HFP), which is of high ionic conductivity (∼3.8 × 10−3 S cm−1 at 25 °C) and electrochemical stability window (∼3 V). The effect of the addition of AC in composite electrode LACs has been analyzed using various techniques such as X-ray diffraction, porosity analysis, and electrochemical methods. The interfaces of composite LACs and GPE film not only offer high rate performance but also show high specific energy (>27.8 Wh kg−1) as compared to the symmetric supercapacitors and pristine lithium iron phosphate (LiFePO4)-based lithium ion batteries. The full BatCap systems have been characterized by cyclic voltammetry and galvanostatic charge–discharge tests. The BatCap systems with composite electrodes (LACs) offer better cyclic performance as compared to that of pristine LiFePO4-based BatCap or LIB LiFePO4/Li4Ti5O12.

  相似文献   

3.
4-N,N-dimethylamino-4′-N′-methylstilbazolium iodide (DMSI) compound was synthesized by Knoevenagel reaction method and the crystals were grown by solution growth method. From the single crystal X-ray diffraction study, it is confirmed that DMSI crystal belongs to monoclinic system. The bond-length alternation (BLA) of the DMSI molecule was found to be 0.11 Å, which is responsible for quadratic NLO response. The electronic transition properties and optical constants such as energy gap (Eg), linear refractive index (n1) were determined using UV–visible and photoluminescence spectral studies. The second order nonlinear optical property of the crystal was examined using Kurtz–Perry powder test. Laser induced damage threshold on (0 0 1) plane of the optically polished crystal was found to be 1.24 GW/cm2.  相似文献   

4.
The electrical and dielectric properties of FeVO4 nanoparticles were studied at different temperatures from ambient to 200 °C. The samples were prepared by simple co-precipitation method using ferric nitrate and ammonium metavanadate as the starting precursors. The powder X-ray diffraction pattern inferred the single phase formation and triclinic structure of FeVO4. The morphology of the particles was elucidated from SEM studies. Detailed studies on the electrical and dielectric properties of the compound were carried out by using solid state impedance spectroscopy. A maximum dc conductivity of 4.65×10−5 S cm−1 was observed at the measuring temperature of 200 °C. The calculated activation energy from dc conductivity was found to be 0.28 eV. It was evident that the electrical transport process in the system was due to the hopping mechanism. The detailed dielectric studies were also carried out.  相似文献   

5.
T C Loya  S L Kakani 《Pramana》1994,43(1):41-54
A microscopic theory of interplay of superconductivity and antiferromagnetism in rare earth ternary systems is developed from first principles for less than half filledf atomic shells. Self consistent equations for the superconducting order parameter Δ and magnetic order parameter Γ, are derived using a Green’s function technique and equation of motion method. The theory is applied to explain the experimental results in the antiferromagnetic superconductor SmRh4B4. The present model explains true coexistence of superconductivity and antiferromagnetism and the suppression of superconductivity by antiferromagnetism. The behaviour of superconducting order parameter (Δ), magnetic order parameter (Γ), the specific heat, the density of states, free energy and critical field (H c) is also studied for the system SmRh4B4.  相似文献   

6.
Organic 4-methyl-4′-N’-methylstilbazolium tosylate, a new derivative of the stilbazolium tosylate family compound was synthesized by condensation method. The optical quality single crystals with dimension 5 mm × 4 mm × 2 mm were grown by slow evaporation technique at 40 °C. The crystal system and lattice parameters were found from single crystal X-ray diffraction studies. The optical transmittance, cut-off wavelength (402 nm) and band gap energy (3.09 eV) were estimated by UV–visible studies. The surface laser damage threshold study was carried out for MMST crystal using Nd:YAG laser. The third-order nonlinear optical susceptibility (χ3) for MMST crystal was estimated by employing Z-scan technique using 1064 nm laser.  相似文献   

7.
Luminescence spectral-kinetic studies have been performed for pure and Ce-doped LaPO4 micro- and nanosized phosphates using synchrotron radiation for the excitation within 5-20 eV energy range at T=8-300 K. Mechanisms for the excitation of Ce3+ 5d-4f emission as well as the quenching processes are discussed. The influence of surface defects has been considered to modify considerably the luminescent properties of nanosized phosphors upon the excitation in the energy range of Ce3+ 4f-5d transitions and LaPO4 host absorption.  相似文献   

8.
The T1←S0 absorption spectrum of 4H-pyran-4-thione (PT) was measured in a static cell at room temperature (550-620 nm) and in a seeded cold supersonic jet (580-600 nm) using the cavity ring-down (CRD) method. In the static cell absolute extinction coefficients were determined between 573 and 610 nm with an accuracy of ∼±5%. In this region 22 harmonic sequences and 18 hot bands were observed. The energetically lowest ground state vibration at 167.5 cm−1 was identified as the promoting mode in the static PT gas. The mode in the triplet state was found at 152.3 cm−1. The CRD absorption spectra of static PT gas and jet-cooled PT are compared with the phosphorescence excitation spectrum of isolated PT. The weak S1, 0←S0, 0 absorption was tentatively assigned to a transition at ∼17433 cm−1.  相似文献   

9.
A new organic nonlinear optical material 1-(4-fluorostyryl)-4-nitrostilbene (FNS) has been synthesized and single crystals of FNS were grown using solvent evaporation solution growth technique (SESGT) by 2-butanon solvent. Single crystal x-ray diffraction analysis reveals the unit cell parameters of the grown crystal are a = 9.494(4) Å, b = 9.864(2) Å, c = 19.501(7) Å and it belongs to monoclinic system with noncentrosymmetric space group. Optical transmittance of the grown crystal has been studied by UV-Vis-NIR spectrum. The optical properties of FNS have been studied by means of optical transmittance measurements in the wavelength range of 190–1100 nm The optical constants were calculated from the optical transmittance (T) data such as refractive index (n), extinction coefficient (k) and reflectance (R). The optical band gap (Eg) of FNS is 3.27 eV with direct transition. The complex dielectric (?) constant of the grown FNS crystal was determined. The second harmonic generation (SHG) efficiency of the grown FNS crystal has been studied by using Kurtz-Perry powder technique and it shows 12 times relatively greater than KDP.  相似文献   

10.
A new approach of chemical bath deposition (CBD) of SnO2 thin films is reported. Films with a 0.2 μm thickness are obtained using the multi-dip deposition approach with a deposition time as little as 8–10 min for each dip. The possibility of fabricating a transparent conducting oxide layer of Cd2SnO4 thin films using CBD is investigated through successive layer deposition of CBD-SnO2 and CBD-CdO films, followed by annealing at different temperatures. High quality films with transmittance exceeding 80% in the visible region are obtained. Annealed CBD-SnO2 films are orthorhombic, highly stoichiometric, strongly adhesive, and transparent with an optical band gap of ~4.42 eV. Cd2SnO4 films with a band gap as high as 3.08 eV; a carrier density as high as 1.7 × 1020 cm?3; and a resistivity as low as 1.01 × 10?2 Ω cm are achieved.  相似文献   

11.
The structural, electronic and optical properties of HgAl2Se4 are investigated using the full potential linear augmented plane wave method based on density functional theory. The calculated structural parameters using LDA are in excellent agreement with the available experimental result. The obtained energy band gap (2.24 eV) using EV-GGA approximation is in excellent agreement with experimental data (2.20 eV). Variation in the energy band gap as a function of the unit cell lattice parameter has been studied. The optical properties show a considerable anisotropy, which makes this compound very useful for various linear–nonlinear optical devices.  相似文献   

12.
A dinuclear Eu (III) complex Eu2(dbt)3·4H2O was synthesized, where H2dbt was 2,8-bis(4′,4′,4′,-trifluoro-1′,3′-dioxobutyl)-dibenzothiophene. The complex emits the characteristic red luminescence of Eu3+ ion due to the 5D07FJ(J=0-4) transitions under 395 nm-light excitation with a luminescent quantum efficiency of 17%. The complex is thermally stable up to 280 °C. It was found that the complex can be effectively excited by a 395 nm-emitting InGaN chip. Bright red light was obtained using the complex as light color-conversion material.  相似文献   

13.
Dielectric response of K2SeO4 in the spectral region 5–460cm–1 was determined using transmissivity and reflectivity measurements as a function of temperature between 80 and 300K. The spectral features above 20cm–1 are interpreted using results of lattice vibrational analysis in three known commensurate phases. The low-frequency dielectric anomaly in the incommensurate phase can be roughly described by critical slowing-down of a Debye relaxation given rise to by the overdamped infrared active phason mode which softens at the incommensurate-commensurate transition.  相似文献   

14.
The lattice constants and elastic constants of the kesterite-type Cu2ZnSnS4 have been calculated using density-functional theory (DFT). The calculated lattice constants are in good agreement with the experimental data. The calculated elastic constants indicate that the bonding strength along the [1 0 0] and [0 1 0] directions is as strong as the one along the [0 0 1] direction. The high B/G ratio shows that the kesterite-type Cu2ZnSnS4 compound has ductile behavior. Finally, using the Debye model, the volume, bulk modulus and heat capacity as a function of temperature for the kesterite-type CZTS have been estimated at different pressures. The Debye temperature and Gruneisen parameter are 157 K and 2.28 at 300 K temperature, respectively. The present results can give some information for the design of the kesterite-type CZTS compounds, and these can also be used to stimulate future experimental and theoretical work.  相似文献   

15.
The ionic conductivity of PVC–ENR–LiClO4 (PVC, polyvinyl chloride; ENR, epoxidized natural rubber) as a function of LiClO4 concentration, ENR concentration, temperature, and radiation dose of electron beam cross-linking has been studied. The electrolyte samples were prepared by solution casting technique. Their ionic conductivities were measured using the impedance spectroscopy technique. It was observed that the relationship between the concentration of salt, as well as temperature, and conductivity were linear. The electrolyte conductivity increases with ENR concentration. This relationship was discussed using the number of charge carrier theory. The conductivity–temperature behaviour of the electrolyte is Arrhenian. The conductivity also varies with the radiation dose of the electron beam cross-linking. The highest room temperature conductivity of the electrolyte of 8.5 × 10−7 S/cm was obtained at 30% by weight of LiClO4. The activation energy, E a and pre-exponential factor, σ o, are 1.4 × 10−2 eV and 1.5 × 10−11 S/cm, respectively.  相似文献   

16.
We have demonstrated an efficient and compact passively Q-switched and mode-locked (QML) 1064 nm Nd:YVO4 laser by using a low temperature grown GaAs (LT-GaAs) saturable absorber as well as an output coupler. Stable QML with envelope duration as short as 10 ns and Q-switched repetition rate of 36 kHz was obtained. It is the shortest envelope duration as far as we know, and it is so short that it can be used as Q-switching pulses directly. At 6.9 W of the incident pump power, average output power of 1.24 W was achieved and the corresponding peak power and energy of a single Q-switched pulse were 3.44 kW and 34.4 μJ, respectively. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of 780 MHz.  相似文献   

17.
K. Singh  R. V. Joat  S. S. Bhoga 《Ionics》2002,8(5-6):470-478
The binary phase diagram of Ag2SO4 — BaSO4 system is proposed using X-ray powder diffraction, thermal analysis (DTA/DSC), scanning electron microscopy, and electrical conductivity results. About 5 mol-% BaSO4 is soluble in β-Ag2SO4. The two-phase (Ag2SO4+BaSO4) mixture exists for 10–90 mol-% of BaSO4 between room temperature and 578 °C. An eutectic of 578 °C exists of the composition 70Ag2SO4+30BaSO4 The conductivity maximum within the solid solubility limits is due to the generation of extrinsic vacancies and lattice expansion as a result of partial substitution of the bigger aliovalent Ba2+ for the Ag+-ions. The eutectic composition shows the maximum conductivity in the entire binary system due to the minimum in grain size, thereby providing a maximum surface ion conducting path. About 1 min response time of the sensor based on using the eutectic composition, as solid electrolyte, is much shorter than that of the sensor with pure Ag2SO4.  相似文献   

18.
Proton-conducting polymer electrolytes based on poly vinyl alcohol (PVA; 88% hydrolyzed) and ammonium iodide (NH4I) has been prepared by solution casting method with different molar ratios of polymer and salt using DMSO as solvent. DMSO has been chosen as a solvent due its high dielectric constant and also its plasticizing nature. The ionic conductivity has been found to increase with increasing salt concentration up to 25 mol% beyond which the conductivity decreases and the highest ambient temperature conductivity has been found to be 2.5×10−3 S cm−1. The conductivity enhancement with addition of NH4I has been well correlated with the increase in amorphous nature of the films confirmed from XRD and differential scanning calorimetry (DSC) analyses. The temperature-dependent conductivity follows the Arrhenius relation. The polymer-proton interactions have been analyzed by FTIR spectroscopy.  相似文献   

19.
The present paper deals with the synthesis of aminooxazole derivatives via thermal and ultrasonic methods using deep eutectic solvent as medium. It was observed that ultrasound-assisted method gave 90% yield in just 8 min as against 3.5 h required to get 69% yield by thermal method. One of the compounds 4-(4-nitrophenyl)-1,3-oxazol-2-amine synthesized by both methods were subjected to material characterization study via XRD, TGA and SEM analysis. It was observed that use of ultrasound not only increased the rate of reaction but also improved the quality of product obtained. The crystallinity of the product from ultrasound method was 21.12% whereas thermal method fetched only 8.33% crystallinity thereby improving crystallinity by almost 60%. In addition, sonochemical synthesis also saved more than 70% energy as depicted by energy calculations.  相似文献   

20.

In this work we are investigating dopant environments in LiYF 4 -LiREF 4 (RE=rare-earth cations) solid solutions, via EXAFS. The main aims are to identify the local environmental symmetry and the average lattice distortion as a function of the concentration and the type of the RE ion. LiY 1 m x RE x F 4 (RE=Gd or Lu) (0< x <1) single crystals were grown by the Czochralski technique under argon or CF 4 atmosphere, crystal-pulling rates were 0.6-1 v mm/h for <100>-oriented boules, with 8-25 v rpm rotation rates. Most of the crystals were also codoped with 2.7 v mol% of neodymium in the melt. EXAFS measurements were performed in transmission and fluorescence modes in the synchrotron XAS line of the LNLS, Campinas, Brazil, in and above the L III absorption edges of the RE ions. The samples were prepared as powder films, for the transmission mode measurements, and as powder or single crystals for fluorescence mode measurements. The WINXAS program was used for data reduction and fitting, and the FEFF6 package was used for the simulations of the spectra. The EXAFS oscillation curves were obtained by standard procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号