首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 117 毫秒
1.
用膜系设计软件设计了λ/4-λ/2的W型的双层减反射薄膜,优化了薄膜的光学常量,并使用溶胶-凝胶技术在玻璃基底上成功镀制了该双层折射率梯度的减反射薄膜.用椭圆偏振光谱仪、紫外-可见-近红外分光光度计、原子力显微镜等分析表征了薄膜的性能.结果表明,镀制了该双层薄膜的玻璃在400 nm~800 nm波段平均透过率增加了近6%,同时薄膜显示出了极佳的机械强度.  相似文献   

2.
以锆酸丙酯[Zr(OPr)4]、正硅酸乙酯(TEOS)为原料, 用溶胶-凝胶(sol-gel)提拉法涂膜, 制备高透过的λ/ 4~λ/ 4型ZrO2/SiO2双层减反膜.该减反膜的表面均匀, 均方根(RMS)粗糙度为1.038 nm, 平均粗糙度(RA)为0.812 nm.制备的双层减反膜具有很好的减反效果, 在石英玻璃基片二面涂膜, 在激光三倍频波长351 nm处透射比达到99.41%, 比未涂膜石英玻璃基片的透射比提高了6.14%;在基频波长1053 nm处透射比达到99.63%, 比未涂膜K9光学玻璃基片的透射比提高了7.67%.膜层具有较高的激光损伤阈值, 在激光波长为1053 nm, 脉冲宽度为1 ns时, 薄膜的激光损伤阈值达到16.8 J/cm2.膜层具有良好的耐擦除性能.  相似文献   

3.
基于导模共振效应三基色窄带滤光片的研究   总被引:1,自引:0,他引:1  
为获得性能优良的三基色窄带滤光片,提出了一种基于减反射薄膜波导光栅结构的导模共振滤光片.该滤光片由亚波长光栅结构、波导层和基底组成.采用严格耦合波理论分析了亚波长光栅结构和波导层厚度对导模共振滤光片反射光谱性能的影响.数值分析表明λ/4-λ/2-λ/4结构能有效提高导模共振滤光片的性能.当光栅结构位于基底侧时,红绿蓝三...  相似文献   

4.
薄膜干涉是大学物理波动光学教学的重要内容,也是薄膜光学的理论基础.薄膜干涉的一个重要应用是用于设计减反膜和高反膜.本文基于传输矩阵法,定量计算了多层介质膜的反射率.以BK7玻璃为例,无镀膜时在可见光范围内,其反射率约为4%.利用薄膜的相消干涉可以减少表面的反射率.镀一层减反膜时,对设计波长550 nm其反射率下降为1.3%,一旦偏离设计波长减反效果变差;镀两层减反膜时,在470 nm~670 nm范围内,减反效果明显改善,反射率均低于1.3%.利用薄膜的相长干涉可以增加表面的反射率.以熔石英为例,镀一层薄膜时,对设计波长1500 nm其反射率可由未镀膜时的3.3%提高到30%;镀七组薄膜时在1360 nm~1660 nm范围内其反射率均可达99%以上.通过这些定量计算,让学生更加深刻地理解所学理论知识在实际中的应用,培养工程意识,提高学习兴趣.  相似文献   

5.
<正> 一、理论基础光学零件的折射率n_(?),与空气折射率n_(?)之差,造成表面具有一定的反射损失.反射损失随基底折射率的增高而增加。为降低表面反射损失、提高光学系统的透过率,通常在零件表面镀一层或多层消反射膜。双层消反射膜,通常采用λ/4—λ/4膜  相似文献   

6.
超高阈值Pick-off反射镜的研制   总被引:1,自引:1,他引:0  
 采用水中抛光技术抛制了90mm×60mm×10 mm的K9玻璃基片,表面粗糙度达1nm。在APS1504镀膜机上,摸索了电子束蒸发镀膜的最佳工艺条件,较稳定地在该超光滑玻璃表面上镀制了对波长1054 nm、入射角45°、反射率R≥99.5%的反射膜。膜层的抗激光损伤阈值可达26 J/cm2(1054nm, 1ns),镀膜后该玻璃基片反射波前可达l /10(p-v),最终制备了超高阈值Pick-off反射镜。  相似文献   

7.
《光学技术》2021,47(1):28-30
利用有限时域差分方法设计并优化了由二氧化硅和氮化硅组成的双层和三层减反射膜,在1550nm波长附近实现减反射效果。采用等离子增强化学气相沉积高质量的二氧化硅和氮化硅薄膜,制备了氧化硅、氮化硅双层减反射膜,同时制备了氮化硅、氧化硅、氮化硅三层减反射膜。测量了两种减反射膜的减反射效果,双层减反射膜的反射率可以达到0.18%以下,三层减反射膜比双层减反射膜具有更大的带宽。  相似文献   

8.
高丽峰  熊胜明  黄伟  孔明东 《光学学报》2008,28(s1):151-154
根据光腔衰荡光谱技术(CRDS)原理,使用中红外光参变振荡器(OPO)为光源建立了直腔与折叠腔相结合的中红外波段3.6 μm 反射率测量实验装置,用于研究中红外波段的高反射膜反射率,测试精度为10-4。使用直型衰荡光腔测试了三对不同薄膜材料设计镀制的高反射腔镜的反射率,并选择了一对腔镜用于实验装置中。采用该装置精确测试了不同薄膜材料镀制的高反射膜的反射率,包括YbF3/ZnS,YbF3 /ZnSe多层膜,以及由银加保护膜镀制的反射镜。研究表明,中红外波段介质膜的反射率可达到R>0.9990,其中由YbF3/ZnSe镀制在硅基底上的多层介质膜3.6 μm反射率可达到99.96%。  相似文献   

9.
短波段光学减反膜的溶胶-凝胶法制备及性能分析   总被引:1,自引:3,他引:1       下载免费PDF全文
 随着大型激光器的发展,对短波段减反膜的要求日益提高,其中钕玻璃激光三倍频(355nm)的减反射成为新的技术要点。采用溶胶-凝胶工艺合成SiO2溶胶,采用提拉镀膜法制备纳米多孔SiO2薄膜,薄膜厚度为75nm,折射率控制在1.22,镀制在石英基底上的薄膜其355nm波长的反射率仅为0.2%。通过氨处理工艺和薄膜的表面修饰,薄膜的抗磨擦性能和疏水性能大大提高,薄膜经过蘸有灰尘、乙醇的棉花球擦洗20次和50次后,透射率最大值仅分别降低0.13% 和 0.39%,与水珠的接触角达到110°。  相似文献   

10.
前言用本技术镀制可见光宽带四层增透膜,实测样品的光谱低反射率曲线是从4000至7000A,P_λ<0.5%;从4100至6900A,R_λ<0.3%。由于在膜系设计和镀制工艺中采用了Ta_2O_5薄膜作为高折射率膜层,所以,镀制工艺比较稳定。  相似文献   

11.
 采用溶胶-凝胶工艺制备了聚乙二醇(PEG)改性SiO2单层增透膜,用输出波长1.06 μm,脉宽3 ns的调Q激光系统产生的强激光进行辐照实验。观察了添加PEG前后的膜层的微结构、表面形貌以及激光损伤行为的变化,讨论了PEG对薄膜激光损伤行为产生影响的机制。结果表明:添加的PEG可以修饰、导向溶胶簇团的生长和交联,并使之有序,由此制备的薄膜结构规整,微缺陷减少,这就提高了膜层的激光损伤阈值;在激光辐照过程中,膜料吸收激光能量,膜层温度升高,膜层的PEG分子受热逐步分解挥发,膜层产生损伤。  相似文献   

12.
1.55 μm偏振无关半导体光放大器腔面减反膜的研制   总被引:3,自引:3,他引:0  
设计并制作了1.55 μm偏振无关半导体光放大器腔面TiO2/SiO2多层减反膜, 工艺过程中设计并使用了反射率实时监控装置, 得到了低于5×10-4的腔面剩余反射率. 器件测试结果表明, 管芯在250 mA电流下仍处于未激射状态, 表明减反膜有效抑制了芯片的激射. 半导体光放大器的自发辐射(ASE)谱波动在0.4 dB以下, 3 dB带宽大于52 nm, 半导体光放大器小信号增益近27 dB, 在1520~1580 nm波长范围内偏振灵敏度小于0.5 dB.  相似文献   

13.
An antireflection(AR) coating is fabricated by applying an optimal spin-coating method and a p H-modified SiO_2 nanoparticle solution on a cover glass. Because the p H value of the solution will affect the aggregation and dispersion of the SiO_2 particles, the transmittance of the AR-treated cover glass will be enhanced under optimal fabricated conditions. The experimental results show that an AR coating fabricated by an SiO_2 nanoparticle solution of pH 11 enhances the transmittance approximately by 3% and 5% under normal and oblique incident conditions, respectively. Furthermore, the AR-treated cover glass exhibits hydrophobicity and shows a 65% enhancement at a contact angle to bare glass.  相似文献   

14.
以正硅酸乙酯为前驱体,二甲基二乙氧基硅烷为造孔剂,采用溶胶凝胶技术在酸催化条件下制备了二氧化硅溶胶;采用提拉法在K9玻璃基片上双面镀膜,经500 ℃热处理,制备得到一种新型单层微孔二氧化硅增透膜。通过改变造孔剂加入量,膜层峰值透过率可达到99.7%,而硬度仍保持在2H以上,同时具有良好的耐摩擦性及粘附性。加速腐蚀实验表明,膜层的环境稳定性是常规膜层的10倍以上。由于该新型增透膜兼具高透过率、良好的机械性能以及很强的环境稳定性,因而在改善太阳能玻璃增透性能方面有极大的应用价值。  相似文献   

15.
溶胶-凝胶法制备TiO_2纳米薄膜及其光催化性能的研究   总被引:3,自引:0,他引:3  
本文通过溶胶-凝胶工艺在玻璃表面制得了均匀透明的TiO2纳米薄膜,其纳米颗粒的大小在50~150nm范围内。该镀膜玻璃的透光性较好,在可见光范围内它相对于普通玻璃来说透光率在72%以上。敌敌畏水溶液的光催化降解实验表明:起光催化作用的TiO2晶型主要是锐钛矿型,因此热处理温度控制在550℃较好。随着镀膜次数的增加,光催化效率提高,当镀膜达到10次时,光解率达到最高,再增加镀膜次数,光解率几乎没有提高。随着光催化效率的进一步提高,该类材料可望在环境保护、污水处理、空气净化等方面具有广阔的应用前景。  相似文献   

16.
Efficient polarizing as well as non-polarizing mirrors for a wavelength of λ=121.6 nm (hydrogen Lyman-α radiation) are necessary to achieve an experimental determination of the magnetic field in the solar corona through the Hanle effect. We have designed, realized and characterized such mirrors. These consist of glass coated with a thin-film stack. The coatings use the most reflective (Al) and most transparent (fluorides) materials at this wavelength. Different coatings were explored which involve an increasing number of films in the coating stack. At the incident angle of maximum polarization where the p-polarized reflectivity R p is minimized, an s-polarized reflectivity R s as high as 69% is experimentally obtained with a coating made of a Fabry–Pérot resonator. To our knowledge, this value is the highest ever reported for a polarizing mirror at this wavelength. Additionally, efficient non-polarizing mirrors have been designed and realized by using a two-layer coating (MgF2/Al/glass). By optimizing the fluoride layer thickness, a mirror with non-polarizing properties in the whole range of incident angles was realized.  相似文献   

17.
The algorithm for calculation of dynamic compliance of multilayer coatings was developed. The compliance modulus and phase lag of coating surface motion vs. the current pressure depend on viscoelastic properties of materials, ratio of wavelength to layer thickness λ/H, and ratio of wave velocity to propagation velocity of shear vibrations in the base layer V / C t,2 0 Dynamic compliance of the two-layer coating consisting of a thick base layer and thin durable outer layer was calculated. The elasticity modulus of the outer layer ranged up to eight values of elastic modulus of the inner layer; the density of the outer layer either remained equal to the density of the inner layer or increased proportionally to the elastic modulus. Depending on V / C t,2 0 two scenarios of compliant coating interaction with the turbulent flow were distinguished: resonant and broadband ones. It is shown that the vibration properties of two-layer coatings can be significantly better than the properties of the monolayer coatings. This makes it possible either to increase the coating strength or to work efficiently at lower velocities.  相似文献   

18.
We report a new structure for broadband antireflection coating by dip-coating technique, which has minimal cost and is compatible with large-scale manufacturing. The coatings are prepared by depositing SiO 2 sol-gel film on a glass substrate, subsequently depositing SiO 2 single-layer particle coating through electrostatic attraction, and depositing a final very thin SiO 2 sol-gel film to improve the mechanical strength of the whole coating structure. The refractive index of the structure changes gradually from the top to the substrate. The transmittance of a glass substrate has been experimentally found to be improved in the spectral range of 400 1 400 nm and in the incidence angle range from 0 to at least 45 . The mechanical strength is immensely improved because of the additional thin SiO 2 sol-gel layer. The surface texture can be applied to the substrates of different materials and shapes as an add-on coating.  相似文献   

19.
李丽丽  Xia Zhen-Hai  杨延清  韩明 《物理学报》2015,64(11):117101-117101
本文采用分子动力学计算方法和Tersoff作用势研究了无定型碳(amorphous carbon, a-C) 涂层厚度对SiC纳米纤维/SiC纳米复合材料断裂方式及力学性能的影响. 分析结果发现, 随着涂层厚度的增加, 纳米纤维的平均应力集中系数下降, 即足够厚度涂层可以同时起到增强和补韧的作用. 当a-C涂层厚度t ≤ 0.3 nm时, 裂纹直接穿透纤维, 纳米复合材料表现出典型的脆性断裂方式; t = 4.0 nm时, 裂纹发生偏转, SiC纳米纤维发生拔出现象, 此时纳米复合材料的拉伸强度约为无涂层纳米复合材料的4倍, 断裂能则提高一个数量级. 计算结果表明, a-C涂层的厚度是SiC纳米纤维/SiC纳米复合材料中产生韧性机理的重要因素, 即传统微米级陶瓷基复合材料的增韧理论在纳米复合材料中仍适用. 研究结果可望为设计同时具有高强度、高韧性的陶瓷基纳米复合材料提供理论基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号