首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The modulational instability of dust ion accoustic waves in a dust plasma with ion-dust collision effects is studied.Using the perturbation method,a modified nonlinear Schroedinger equation contains a damping term that comes from the effect of the ion-dust collision is derived.It is found that the inclusion of the ion-dust collision would modify the modulational instability of the wave packet and could not admit any stationary envelope solitary waves.  相似文献   

2.
The effect of negative ions on the modulational instability properties of nonlinear dust acoustic (DA) waves in the electronegative dusty plasmas was investigated by considering Boltzmann-distributed electrons, negative ions, positive ions as well as positively charged dust grain under the ultraviolet irradiation. It is shown that the modulational instability properties of the DA waves were strongly affected by the temperature and proportion of negative ions. The modulational instability can occur only if the proportion of negative ions was smaller than critical value. The instability growth rate has a maximum value when the proportion of negative ions was a critical one in the unstable region. The effect of photoelectron generated by ultraviolet irradiation on the modulational instability of dust acoustic waves was also discussed by numerical method.  相似文献   

3.
《Physics letters. A》2003,280(2-3):226-233
The modulational instability of dust acoustic waves in a dusty plasma with non-adiabatic dust charge fluctuation is studied. Using the perturbation method, a modified nonlinear Schrödinger equation containing a damping term that comes from the effect of dust charge variation is derived. It is found that the modulational instability of the wave packet and the propagation characters of the envelope solitary waves are modified significantly by the non-adiabatic dust charge fluctuation.  相似文献   

4.
A Korteweg-de Vires-type (KdV-type) equation and a modifiedNonlinear Schrödinger equation (NLSE) for the dust lattice wave(DLW) are derived in a weakly inhomogeneous dust plasma crystal. Itseems that the amplitude and the velocity of the dust lattice solitary waves decay exponentially with increasing time in a dust lattice. The modulational instability of this dust lattice envelope waves is investigated as well. It is found that the waves are modulational stable under certain conditions. On the other hand, the waves are modulational unstable if the conditions are not satisfied.  相似文献   

5.
Resonant scattering ("scattering through waves") of ions on dust particles in plasmas is considered in the framework of the kinetic theory which consistently takes into account ion-dust collisions and dust charge fluctuations. Resonance with low frequency dusty plasma modes can enhance the ion-dust scattering cross section and the ion drag force on dust particles.  相似文献   

6.
The basic features of obliquely propagating dust ion-acoustic (DIA) solitary waves in a hot adiabatic magnetized dusty plasma (containing adiabatic inertia-less electrons, adiabatic inertial ions, and negatively charged static dust) have been investigated. The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV) equation which admits a small amplitude solitary wave solution. The combined effects of plasma particle (electron and ion) adiabaticity, ion-dust collision, and external magnetic field (obliqueness), which are found to significantly modify the basic features of the small but finite-amplitude DIA solitary waves are explicitly examined. The implications of our results in space and laboratory dusty plasmas are briefly discussed.  相似文献   

7.
《Physics letters. A》2014,378(22-23):1622-1625
The propagation of finite amplitude ultra-low-frequency shear dust Alfvén (SDA) waves, and their modulational instability in a magnetized plasma medium of positive and negatively charged dust fluids have been theoretically investigated by using the reductive perturbation method. The derivative nonlinear Schrödinger equation is derived to examine the stability analysis of such SDA waves. It is found that the SDA waves propagating in such an opposite polarity dust plasma medium are modulationally unstable, and that the instability criterion and the growth rate of these unstable SDA waves in such a novel opposite polarity dust plasma medium are found to be significantly different from those in electron–ion or electron–positron plasma media. The implications of the present investigation in different space environments and laboratory devices are briefly discussed.  相似文献   

8.
在一维平板鞘层中应用流体模型研究了尘埃等离子体鞘层中碰撞对尘埃颗粒密度和带电量的影响。 研究所涉及的碰撞主要有电离碰撞,电子、离子分别与中性粒子的碰撞,以及电子、离子分别与尘埃颗粒的碰撞。通过采用四阶龙格库塔法,得到了数值解。结果表明,随着电离碰撞或者电子、离子分别与中性粒子碰撞的频率 增加,都将导致鞘层中尘埃颗粒的数密度增大,数密度的极值位置向鞘边位置靠近,尘埃颗粒带电量增多。电子、离子与尘埃颗粒的碰撞,使得尘埃带电量减小。此外,从研究的结果来看,由离子产生的碰撞要比电子产生的碰 撞对尘埃颗粒的影响明显得多。  相似文献   

9.
The fluid dynamics model was used to study the influence of the existence of the collisions on the dust particles in a dusty plasma sheath. The main collisions in this study consist of the ionization collision, the collision between electron and neutral particle, the collision between ion and neutral particle, the collision between electron and dust particle, the collision between ion and dust particle. Numerical calculation results are obtained by the fourth-order-Rung-Kutta method. It is shown that both the dust particles’ density and corresponding electricity quantity increase as the following collisions’ frequency enhances, such as ionization collision, the collision between electron and neutral particle, the collision between ion and neutral particle. The charge reduces due to the collisions concluding electron-dust particle and ion-dust particle. In addition, the effect produced by ions’ collision is much more obviously compared with electrons’ collision.  相似文献   

10.
The nonlinear propagation of planar and nonplanar (cylindrical and spherical) ion-acoustic waves in an unmagnetized electron–positron–ion–dust plasma with two-electron temperature distributions is investigated in the context of the nonextensive statistics. Using the reductive perturbation method, a modified nonlinear Schrödinger equation is derived for the potential wave amplitude. The effects of plasma parameters on the modulational instability of ion-acoustic waves are discussed in detail for planar as well as for cylindrical and spherical geometries. In addition, for the planar case, we analyze how the plasma parameters influence the nonlinear structures of the first- and second-order ion-acoustic rogue waves within the modulational instability region. The present results may be helpful in providing a good fit between the theoretical analysis and real applications in future spatial observations and laboratory plasma experiments.  相似文献   

11.
12.
An analytical study on the properties of intrinsic localized modes and modulational instability in a quantum two-dimensional ferromagnet with single-ion uniaxial anisotropy is completed in the semiclassical limit. By making use of the semidiscrete multiple-scale method, we obtain a line localized solution and a radially symmetric localized solution, and analyze their existence conditions. Taking into account that the existence of bright localized solutions is closely linked to the modulational instability of plane waves, we analytically study the discrete modulational instability of plane spin waves. The result of the modulational instability analysis show that the uniaxial anisotropy plays a key role in the appearance of our intrinsic localized spin wave modes.  相似文献   

13.
Effects of nonadiabaticity of variable dust charge, dust fluid temperature, trapped electrons as well as nonisothermality of ions on the amplitude modulation of dust acoustic waves in an unmagnetized dusty plasma are investigated. A modified nonlinear Schr?dinger equation (NLSE) is obtained by the standard reductive perturbation technique and is solved numerically by the split-step Fourier method. The modulational instability and the envelope solitary wave structure are found to be modified somewhat by the effects of nonthermally distributed ions and trapped electrons.  相似文献   

14.
The general nonlinear equation of the third order in field strength for the lower-hybrid drift waves in inhomogeneous plasma is obtained on the basis of kinetic theory. This equation enables us to describe strong turbulence effects (modulational instability, soliton-like solutions, etc.) as well as weak turbulence effects (decays, scattering). The investigation of the modulational instability of the lower-hybrid drift waves is carried out. It is demonstrated that the development of the lower-hybrid drift wave modulational instability is possible only when the wavevector of the modulational perturbations is less or of the order of the wavevector of the pump wave. The condition on the wave vectors, when the nonlinear response defining the character of the modulational instability is determined by the inhomogeneity effects, is obtained.  相似文献   

15.
A standard nonlinear Schrödinger equation has been established by using the reductive perturbation method to investigate the propagation of electrostatic dust-acoustic waves, and their modulational instability as well as the formation of localized electrostatic envelope solitons in an electron-depleted unmagnetized dusty plasma system comprising opposite polarity dust grains and super-thermal positive ions. The relevant physical plasma parameters (viz., charge, mass, number density of positive and negative dust grains, and super-thermality of the positive ions, etc.) have rigorous impact to recognize the stability conditions of dust-acoustic waves. The present study is useful for understanding the mechanism of the formation of dust-acoustic envelope solitons associated with dust-acoustic waves in the laboratory and space environments.  相似文献   

16.
本文利用时间相关的变分法对准二维的非线性薛定谔方程平面波的调制不稳定性进行了研究。在拉格朗日变分的框架下推导出相与振幅的演化方程,进而对线性化扰动方程的解进行了数值模拟,直观地展示了平面波的调制不稳定性。最后通过对能量方程有效势的分析,严格地得到了平面波解调制不稳定的判断准则。  相似文献   

17.
We demonstrate experimentally the existence of cross-phase-modulation-induced modulational instability in the absence of group-velocity mismatch between the interacting nonlinear dispersive waves. The experiment is performed by means of a normally dispersive isotropic bimodal fiber. The group-velocity mismatch between the fundamental and the first-order modes that constitute the two interacting waves is controlled by wavelength tuning. A strong power dependence of the modulational instability spectra is observed near the condition of group-velocity matching.  相似文献   

18.
The manifestations of the induced scattering effects in the generation process of current driven by lower-hybrid (LH) waves are studied taking into account the radiative-resonant interactions. The influence extent of the LH wave modulational instability on current drive is estimated. It is shown that the induced scattering of LH waves on plasma particles leads to a change of the LH waves spectrum and through this leads to an essential influence on fast electrons generation rate and the steady-state current drive. The modulational instability of LH waves can provide a “spectral gap” filling in the case of sufficiently strong LH wave pumping.  相似文献   

19.
By one-dimensional particle-in-cell(PIC) simulations, the propagation and stability of relativistic electromagnetic(EM) solitary waves as well as modulational instability of plane EM waves are studied in uniform cold electron-ion plasmas.The investigation not only confirms the solitary wave motion characteristics and modulational instability theory, but more importantly, gives the following findings. For a simulation with the plasma density 1023 m-3 and the dimensionless vector potential amplitude 0.18, it is found that the EM solitary wave can stably propagate when the carrier wave frequency is smaller than 3.83 times of the plasma frequency. While for the carrier wave frequency larger than that, it can excite a very weak Langmuir oscillation, which is an order of magnitude smaller than the transverse electron momentum and may in turn modulate the EM solitary wave and cause the modulational instability, so that the solitary wave begins to deform after a long enough distance propagation. The stable propagation distance before an obvious observation of instability increases(decreases) with the increase of the carrier wave frequency(vector potential amplitude). The study on the plane EM wave shows that a modulational instability may occur and its wavenumber is approximately equal to the modulational wavenumber by Langmuir oscillation and is independent of the carrier wave frequency and the vector potential amplitude.This reveals the role of the Langmuir oscillation excitation in the inducement of modulational instability and also proves the modulational instability of EM solitary wave.  相似文献   

20.
A new type of modulational instability for coherent as well as partially coherent light in systems with integrating nonlinearity caused by an irreversible process is investigated both experimentally and theoretically. In such systems plane waves never reach the stationary limit and exhibit a nontrivial time dependence resulting in new features of the modulational instability. For example, the modulational frequency of the nonexponentially increasing perturbation with maximum gain decreases while the wave is propagating. The threshold for vanishing modulational instability due to a finite degree of spatial coherence depends only on system parameters and not on the light intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号