首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new technique is presented for generating myocardial tagging using the signal intensity minima of the transition zones between the bands of 0 degrees and 360 degrees rotations, induced by a tandem of two adiabatic delays alternating with nutations for tailored excitation (DANTE) inversion sequences. With this approach, the underlying matrix corresponds to magnetization that has experienced 0 degrees or 360 degrees rotations. The DANTE sequences were implemented from adiabatic parent pulses for insensitivity of the underlying matrix to B(1) inhomogeneity. The performance of the proposed tagging technique is demonstrated theoretically with computer simulations and experimentally on phantom and on the canine heart, using a surface coil for both RF transmission and signal reception. The simulations and the experimental data demonstrated uniform grid contrast and sharp tagging profiles over a twofold variation of the B(1) field magnitude.  相似文献   

2.
The transient thiophosphenous fluoride FPS was produced by pyrolysis of 2.5% F2PSPF2 in Ar at 1300–1800°C. High-resolution (≥0.004 cm−1) Fourier transform infrared spectra of the a-type ν1 and b-type ν2 bands, centered respectively at 803.249 and 726.268 cm−1, were measured and fitted to rotational and quartic centrifugal distortion parameters. The millimeter-wave spectrum, essentially b-type, was measured between 300 and 370 GHz in the ground state and in the ν3 excited state for FP32S and in the ground state for FP34S. The frequencies were fitted to a Watson-type A-reduced Hamiltonian up to sextic distortion terms. High level ab initio calculations with large basis sets were performed on FPS and supported the first identification of its infrared and millimeter wave spectra. The calculated anharmonic force field provided precise ab initio rovibrational α constants which were combined with the experimental molecular parameters to determine an accurate equilibrium structure of the molecule: re(PS)=188.86 pm, re(PF)=158.70 pm, θ(FPS)=109.28°. The collision-controlled 1/e lifetime measured in a 10-Pa (1 : 20) F2PSPF2/Ar mixture was 2 s, more than two orders of magnitude larger than that of FPO under the same experimental conditions.  相似文献   

3.
High-resolution (0.001 cm−1) coherent anti-Stokes Raman scattering (CARS) was used to observe the Q-branch structure of the IR-inactive ν1 symmetric stretching mode of 32S16O3 and its various 18O isotopomers. The ν1 spectrum of 32S16O3 reveals two intense Q-branches in the region 1065–1067 cm−1, with surprisingly complex vibrational–rotational structure not resolved in earlier studies. Efforts to simulate this with a simple Fermi-resonance model involving ν1 and 2ν4 states do not reproduce the spectral detail, nor do they yield reasonable spectroscopic parameters. A more subtle combination of Fermi resonance and indirect Coriolis interactions with nearby states, 2ν4(1=0, ±2), ν24(1=±1), 2ν2(1=0), is suspected and a determination of the location of these coupled states by high-resolution infrared measurements is under way. At medium resolution (0.125 cm−1), the infrared spectra reveal Q-branch features from which approximate band origins are estimated for the ν2, ν3, and ν4 fundamental modes of 32S18O3, 32S18O216O, and 32S18O16O2. These and literature data for 32S16O3 are used to calculate force constants for SO3 and a comparison is made with similar values for SO2 and SO. The frequencies and force constants are in excellent agreement with those obtained by Martin in a recent ab initio calculation.  相似文献   

4.
New NMR broadband inversion pulses that compensate both for resonance offset and radiofrequency (RF) inhomogeneity are described. The approach described is a straightforward computer optimization of an initial digitized waveform generated from either a constant-amplitude frequency sweep or from an existing composite inversion pulse. Problems with convergence to local minima are alleviated by the way the optimization is carried out. For a given duration and maximum allowable RF field strength B1 (but not necessarily given RMS power deposition), the resultant broadband inversion pulse (BIP) shows superior inversion compared to inversion pulses obtained from previous methods, including adiabatic inversion pulses. Any existing BIP can be systematically elaborated to build up longer inversion pulses that perform over larger and larger bandwidths. The resulting pulse need not be adiabatic throughout its duration or across the entire operational bandwidth.  相似文献   

5.
A capillary NMR flow probe was designed to generate high-resolution 1H NMR spectra at 600 MHz from the cleaved product of individual 160-μm Tentagel combinatorial chemistry beads. By injecting a dissolved sample sandwiched between an immiscible, perfluorinated organic liquid directly into the probe, NMR spectra of the product cleaved from single beads were acquired in just 1 h of spectrometer time without diffusional dilution. Sample handling efficiency on the single bead scale was comparable to that obtained with a bulk sample. Using the relative intensity of the DMSO-d5H versus the analyte signals in a fully relaxed CPMG spectrum, the amount of product cleaved from a single bead was determined to be 540±170 pmol in one of the samples. Following the NMR data collection, the samples were examined with electrospray ionization mass spectrometry to provide additional structural information. By coupling with microliter-volume fluidic capabilities, the capillary flow probe described here will enable multidimensional characterization of single solid-phase resin products in an online manner.  相似文献   

6.
In many realistic fluid-dynamical simulations the specification of the boundary conditions, the error sources, and the number of time steps to reach a steady state are important practical considerations. In this paper we study these issues in the case of the lattice-BGK model. The objective is to present a comprehensive overview of some pitfalls and shortcomings of the lattice-BGK method and to introduce some new ideas useful in practical simulations. We begin with an evaluation of the widely used bounce-back boundary condition in staircase geometries by simulating flow in an inclined tube. It is shown that the bounce-back scheme is first-order accurate in space when the location of the non-slip wall is assumed to be at the boundary nodes. Moreover, for a specific inclination angle of 45 degrees, the scheme is found to be second-order accurate when the location of the non-slip velocity is fitted halfway between the last fluid nodes and the first solid nodes. The error as a function of the relaxation parameter is in that case qualitatively similar to that of flat walls. Next, a comparison of simulations of fluid flow by means of pressure boundaries and by means of body force is presented. A good agreement between these two boundary conditions has been found in the creeping-flow regime. For higher Reynolds numbers differences have been found that are probably caused by problems associated with the pressure boundaries. Furthermore, two widely used 3D models, namelyD3Q15andD3Q19, are analysed. It is shown that theD3Q15model may induce artificial checkerboard invariants due to the connectivity of the lattice. Finally, a new iterative method, which significantly reduces the saturation time, is presented and validated on different benchmark problems.  相似文献   

7.
We present new numerical methods for constructing approximate solutions to the Cauchy problem for Hamilton–Jacobi equations of the form ut+H(Dxu)=0. The methods are based on dimensional splitting and front tracking for solving the associated (non-strictly hyperbolic) system of conservation laws pt+DxH(p)=0, where p=Dxu. In particular, our methods depend heavily on a front tracking method for one-dimensional scalar conservation laws with discontinuous coefficients. The proposed methods are unconditionally stable in the sense that the time step is not limited by the space discretization and they can be viewed as “large-time-step” Godunov-type (or front tracking) methods. We present several numerical examples illustrating the main features of the proposed methods. We also compare our methods with several methods from the literature.  相似文献   

8.
Two 2D J-modulated HSQC-based experiments were designed for precise determination of small residual dipolar one-bond carbon–proton coupling constants in 13C natural abundance carbohydrates. Crucial to the precision of a few hundredths of Hz achieved by these methods was the use of long modulation intervals and BIRD pulses, which acted as semiselective inversion pulses. The BIRD pulses eliminated effective evolution of all but 1JCH couplings, resulting in signal modulation that can be described by simple modulation functions. A thorough analysis of such modulation functions for a typical four-spin carbohydrate spin system was performed for both experiments. The results showed that the evolution of the 1H–1H and long-range 1H–13C couplings during the BIRD pulses did not necessitate the introduction of more complicated modulation functions. The effects of pulse imperfections were also inspected. While weakly coupled spin systems can be analyzed by simple fitting of cross peak intensities, in strongly coupled spin systems the evolution of the density matrix needs to be considered in order to analyse data accurately. However, if strong coupling effects are modest the errors in coupling constants determined by the “weak coupling” analysis are of similar magnitudes in oriented and isotropic samples and are partially cancelled during dipolar coupling calculation. Simple criteria have been established as to when the strong coupling treatment needs to be invoked.  相似文献   

9.
In this paper we present a second order finite volume method for the resolution of the bidimensional ideal MHD equations on adaptively refined triangular meshes. Our numerical flux function is based on a multidimensional extension of the Roe scheme proposed by Cargo and Gallice for the 1D MHD system. If the mesh is only composed of triangles, our scheme is proved to be weakly consistent with the condition …B=0. This property fails on a cartesian grid. The efficiency of our refinement procedure is shown on 2D MHD shock capturing simulations. Numerical results are compared in case of the interaction of a supersonic plasma with a cylinder on the adapted grid and several non-refined grids. We also present a mass loading simulation which corresponds to a 2D version of the interaction between the solar wind and a comet.  相似文献   

10.
Stray-field techniques are reported for 31P studies of solids for a variety of compounds including bone, bone meal and calcium hydroxyapatite. Long Hahn echo trains produced by the application of many pulses were used as in the long echo-train summation technique. Double-resonance enhancements of 31P by use of both direct and indirect experiments were attempted on a sample of NH4PF6:31P{19F} double resonance produced, at most, a 26% increase in the initial level of the 31P echo signal.  相似文献   

11.
Laser-polarized 129Xe and a high-Tcsuperconducting quantum interference device (SQUID) are used to obtain magnetic resonance images in porous materials at a magnetic field of 2.3 mT, corresponding to a Larmor frequency of 27 kHz. Image resolution of 1 mm is obtained with gradients of only 1 mT/m. The resolution of xenon chemical shifts in different physicochemical environments at ultralow fields is also demonstrated. Details of the circulating flow optical pumping apparatus and the SQUID spectrometer are presented.  相似文献   

12.
Macroscopic magnetic field inhomogeneities might lead to image distortions, while microscopic field inhomogeneities, due to susceptibility changes in tissues, cause spin dephasing and decreasing T2 relaxation time. The latter effects are especially observed in the trabecular bone and in regions adjacent to air-containing cavities when gradient-echo sequences are applied. In conventional MRI, these susceptibility-related signal voids can be avoided by applying spin-echo (SE) techniques. In this study, an alternative method for the examination and control of susceptibility-related effects by spin-lock (SL) radiofrequency pulses is presented: SL pulses were applied in two different susceptibility-sensitive sequence types: (a) between the jump and return 90° pulses in a 90°xτ−90°x magnetization-prepared Fast Low Angle Shot (FLASH) sequence and (b) between the 90° pulse and the 180° pulse in an asymmetric SE sequence. The range of Larmor frequencies used for spin locking can be determined for different B1 amplitudes of the SL pulses, allowing control of image contrast by the amplitude of the SL pulses.  相似文献   

13.
Magnetic resonance tagging usually relies on controlling the phase dispersion of the transverse magnetization component. Phase dispersion is, however, affected by the inherent phase of selective excitation pulses, thus limiting their combination with tagging sequences to the application of refocusable pulses, as in the localized spatial modulation of magnetization (L-SPAMM) technique. In this study, we examine the effect of selective excitation pulses on a L-SPAMM 1-1 sequence, showing that in the case of two identical pulses the phase component is canceled out, and thus preemphasis and refocus gradients are not needed, allowing us to take advantage of a constant gradient throughout the tagging sequence, and also that one might choose nonrefocusable maximum and minimum phase pulses.  相似文献   

14.
Polyynes are of astrophysical interest since they appear to be involved in organic chemistry in very different mediums. In Titan's atmosphere, the lightest polyyne, C4H2, was detected by Voyager. Recently C4H2 and C6H2 have been discovered in a protoplanetary nebula, suggesting polyynes as a possible chemical pathway to PAH (polycyclic aromatic hydrocarbons). Moreover, several experimental simulations and modeling imply their production from the photochemistry of methane and their involvement in the formation of organic aerosols. After the study of C4H2 and C6H2 spectra in the UV and IR wavelength range, we report here the first spectrum of gaseous C8H2 in the range 400–4000 cm−1 at room temperature and low resolution. The task was hardly achieved because of the high instability of this molecule with temperature and pressure. To avoid exothermic polymerization, the compound as mixed with a solvent. We have performed a separate spectroscopic study of the solvent to determine C8H2 partial pressure within the mixture. This allowed us to calculate C8H2 integrated band intensities. In the studied wavelength range, C8H2 presents three main bands similar to those of C6H2 in terms of vibrational type, position, and relative intensity. To study the possible identification of these polyynes by spatial observatories (Cassini–Huygens, ISO), we have also measured the C6H2 and C8H2 infrared spectra in the range 400–1500 cm−1 at 0.35 cm−1 resolution.  相似文献   

15.
Amino acid type-selective experiments can help to remove ambiguities in automated assignment procedures for 15N/13C-labeled proteins. Here we present five triple-resonance experiments that yield amino acid type-selective 1H–15N correlations for aromatic amino acids. Four of the novel experiments are based on the MUSIC coherence transfer scheme that replaces the initial INEPT transfer and is selective for CH2. The MUSIC sequence is combined with selective excitation pulses to create experiments for Trp (W-HSQC) as well as Phe, Tyr, and His (FYH-HSQC). In addition, an experiment selective for Trp H1–N1 is presented. The new experiments are recorded as two-dimensional experiments and their performance is demonstrated with the application to a protein domain of 115 amino acids.  相似文献   

16.
This study investigates the effects of developmental stage and muscle type on the mobility and distribution of water within skeletal muscles, using low-field 1H-NMR transverse relaxation measurements in vitro on four different porcine muscles (M. longissimus dorsi, M. semitendinosus, M. biceps femoris, M. vastus intermedius) from a total of 48 pigs slaughtered at various weight classes between 25 kg and 150 kg. Principal component analysis (PCA) revealed effects of both slaughter weight and muscle type on the transverse relaxation decay. Independent of developmental stage and muscle type, distributed exponential analysis of the NMR T2 relaxation data imparted the existence of three distinct water populations, T2b, T21, and T22, with relaxation times of approximately 1–10, 45–120, and 200–500 ms, respectively. The most profound change during muscle growth was a shift toward faster relaxation in the intermediate time constant, T21. It decreased by approx. 24% in all four muscle types during the period from 25 to 150 kg live weight. Determination of dry matter, fat, and protein content in the muscles showed that the changes in relaxation time of the intermediate time constant, T21, during growth should be ascribed mainly to a change in protein content, as the protein content explained 77% of the variation in the T21 time constant. Partial least squares (PLS) regression revealed validated correlations in the region of 0.58 to 0.77 between NMR transverse relaxation data and muscle development for all the four muscle types, which indicates that NMR relaxation measurements may be used in the prediction of muscle developmental stage.  相似文献   

17.
We present two new sensitivity enhanced gradient NMR experiments for measuring interference effects between chemical shift anisotropy (CSA) and dipolar coupling interactions in a scalar coupled two-spin system in both the laboratory and rotating frames. We apply these methods for quantitative measurement of longitudinal and transverse cross-correlation rates involving interference of 13C CSA and 13C–1H dipolar coupling in a disaccharide, α,α- -trehalose, at natural abundance of 13C as well as interference of amide 15N CSA and 15N–1H dipolar coupling in uniformly 15N-labeled ubiquitin. We demonstrate that the standard heteronuclear T1, T2, and steady-state NOE autocorrelation experiments augmented by cross-correlation measurements provide sufficient experimental data to quantitatively separate the structural and dynamic contributions to these relaxation rates when the simplifying assumptions of isotropic overall tumbling and an axially symmetric chemical shift tensor are valid.  相似文献   

18.
While most proton (1H) spectra acquired in vivo utilize selective suppression of the solvent signal for more sensitive detection of signals from the dilute metabolites, recent reports have demonstrated the feasibility and advantages of collecting in vivo data without solvent attenuation. When these acquisitions are performed at short echo times, the presence of frequency modulations of the water resonance may become an obstacle to the identification and quantitation of metabolite resonances. The present report addresses the characteristics, origin, and elimination of these sidebands. Sideband amplitudes were measured as a function of delay time between gradient pulse and data collection, as a function of gradient pulse amplitude, and as a function of spatial location of the sample for each of the three orthogonal gradient sets. Acoustic acquisitions were performed to demonstrate the correlation between mechanical vibration resonances and the frequencies of MR sidebands. A mathematical framework is developed and compared with the experimental results. This derivation is based on the theory that these frequency modulations are induced by magnetic field fluctuations generated by the transient oscillations of gradient coils.  相似文献   

19.
An algorithm is presented for the solution of the time dependent reaction-diffusion systems which arise in non-equilibrium radiation diffusion applications. This system of nonlinear equations is solved by coupling three numerical methods, Jacobian-free Newton–Krylov, operator splitting, and multigrid linear solvers. An inexact Newton's method is used to solve the system of nonlinear equations. Since building the Jacobian matrix for problems of interest can be challenging, we employ a Jacobian–free implementation of Newton's method, where the action of the Jacobian matrix on a vector is approximated by a first order Taylor series expansion. Preconditioned generalized minimal residual (PGMRES) is the Krylov method used to solve the linear systems that come from the iterations of Newton's method. The preconditioner in this solution method is constructed using a physics-based divide and conquer approach, often referred to as operator splitting. This solution procedure inverts the scalar elliptic systems that make up the preconditioner using simple multigrid methods. The preconditioner also addresses the strong coupling between equations with local 2×2 block solves. The intra-cell coupling is applied after the inter-cell coupling has already been addressed by the elliptic solves. Results are presented using this solution procedure that demonstrate its efficiency while incurring minimal memory requirements.  相似文献   

20.
The low sensitivity of nuclear quadrupole resonance (NQR) of powders is due, in part, to the inability to efficiently excite and detect nuclei at all crystal orientations. Here we describe the use of circularly polarized RF magnetic fields for excitation followed by detection of the resultant circular RF magnetization in I=1 NQR to increase the fraction of nuclei excited and detected. We show that the technique can greatly improve the effective RF field homogeneity and increase the largest signal amplitude by a factor of 1.72. In favorable cases, the resulting circularly polarized NQR signal can be separated from linearly polarized magnetoacoustic and piezoelectric ringing artifacts that occur in some NQR materials detection applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号