首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
孙阳  安俊英  徐海亭 《声学学报》2013,38(6):699-706
对水中弹性球壳的低频覆盖层消声效果和消声机理进行研究。声斗篷(Acoustic cloak)是各向异性的超常材料,根据有效介质近似理论(Effective MediumApproximationTheory),采用各向同性多层介质近似各向异性材料的声斗篷,推导出覆盖多层介质水中弹性球壳散射声场的解析表达式,计算了弹性球壳覆盖多层介质前后的散射形态函数、谐振模态以及声场分布,分析了覆盖前后球壳的声散射特性和声传播机理。研究表明,覆盖层内的声波在多层介质之间的声传播方向发生改变,声场形成弯曲变形,声能流绕过目标,这不仅极大的降低了低频散射强度,而且使到达弹性体表面的声场强度非常小,散射频响中除了0阶子波产生的第一个谐振峰外,无法激发弹性球壳的其它谐振模态,有效的抑制弹性球壳的谐振散射。   相似文献   

2.
Recent papers have initiated interesting comparisons between aeroacoustic theory and the results of acoustic scattering problems. In this paper, we consider some aspects of these comparisons for acoustic scattering by a sphere. We give a derivation of Curle's equation for a specific class of linear acoustic scattering problems, and, in response to previous claims to the contrary, give an explicit confirmation of Curle's equation for plane wave scattering by a stationary rigid sphere of arbitrary size in an inviscid fluid. We construct the complete solution for scattering by a rigid sphere in a viscous fluid, and show that the neglect of viscous terms in Curie's equation yields an incomplete prediction of the far field dipole pressure. We also consider the null field solution of the sphere scattering problem, and give its extension to the vorticity modes associated with viscosity. Finally, we construct a solution for an elastic sphere in a viscous fluid, and show that the rigid sphere/null field solution is recovered from the limit of infinite longitudinal and shear wave speeds in the elastic solid.  相似文献   

3.
The acoustic radiation force on a fluid sphere immersed in water between two boundaries given by a Gaussian beam is theoretically and numerically investigated in this work. Based on the finite series method, the Gaussian beam is expressed in terms of Bessel function and a weighting parameter. The effects of the two boundaries concerned in our study is worked out by the image theory. This work also provides a reference when considering the effects of certain factors such as the radius of the sphere and the distance between the sphere and two boundaries. The contrast with the acoustic radiation force on a fluid sphere near only one boundary is also made in this paper. Our study can offer a theoretical basis for acoustics manipulation, acoustic sensors in the field of biomedical ultrasound and material science.  相似文献   

4.
The interaction between fluid loaded fiber-optic cantilevers and a low frequency acoustic wave is investigated as the basis for an acoustic vector sensor. The displacements of the prototype cantilevers are measured with an integrated fiber laser strain sensor. A theoretical model predicting the frequency dependent shape of acoustically driven planar and cylindrical fiber-optic cantilevers incorporating effects of fluid viscosity is presented. The model demonstrates good agreement with the measured response of two prototype cantilevers, characterized with a vibrating water column, in the regime of Re ≥ 1. The performance of each cantilever geometry is also analyzed. Factors affecting the sensor performance such as fluid viscosity, laser mode profile, and support motion are considered. The planar cantilever is shown to experience the largest acoustically induced force and hence the highest acoustic responsivity. However, the cylindrical cantilever exhibits the smoothest response in water, due to the influence of viscous fluid damping, and is capable of two axis particle velocity measurement. These cantilevers are shown to be capable of achieving acoustic resolutions approaching the lowest sea-state ocean noise.  相似文献   

5.
王明升  李威 《声学学报》2020,45(1):87-93
通过声散射理论,将水中粒子的Bessel波束声散射场的分波序列(PWS)表达公式加以推广,进而推导出声辐射力的表达公式,获得了液体球及弹性球在Bessel波束下声辐射力的变化规律。通过观察不同散射角形态函数,可发现声辐射力的产生与粒子背向散射抑制程度有关。对于液体球粒子,球壳厚度及材料介质对粒子声辐射力有着重要的影响,同时Bessel波束波锥角越大,产生负声辐射力的可能性越大。对于弹性球和弹性单层壳粒子,声辐射力的产生与其本身的共振特征存在很大的关系。同时,通过改变球壳内介质及壳层厚度的方法,可增加产生的负声辐射力的频率范围及幅值强度.   相似文献   

6.
A time domain finite volume method(TDFVM)based on wave theory is developed to analyze the transient response and natural characteristics of structural-acoustic coupling problems in an enclosed cavity.In the present method,the elastic dynamic equations and acoustic equation in heterogeneous medium are solved in solid domains and fluid domains respectively.The structural-acoustic coupling is implemented according to the continuity condition of the particle velocity along the normal direction and the normal traction equilibrium condition on the interface.Several numerical examples are presented to validate the effectiveness and accuracy of the present TDFVM.Then the effects of water depth on the acoustic and vibration characteristics and the natural characteristics of a structural-acoustic coupling system are analyzed.The numerical results show that the increase of water depth leads to a stronger coupling between the water and structure and the decrease of natural frequencies of coupling system,The computational cost and memory of this method are small and it can be applicable to structural-acoustic coupling problems in the heterogeneous fluid.  相似文献   

7.
Error analysis of a practical energy density sensor   总被引:1,自引:0,他引:1  
The investigation of an active control system based on acoustic energy density has led to the analysis and development of an inexpensive three-axes energy density sensor. The energy density sensor comprises six electret microphones mounted on the surface of a 0.025-m (1 in.) radius sphere. The bias errors for the potential, kinetic, and total energy density as well as the magnitude of intensity of a spherical sensor are compared to a sensor comprising six microphones suspended in space. Analytical, computer-modeled, and experimental data are presented for both sensor configurations in the case of traveling and standing wave fields, for an arbitrary incidence angle. It is shown that the energy density measurement is the most nearly accurate measurement of the four for the conditions presented. Experimentally, it is found that the spherical energy density sensor is within +/- 1.75 dB compared to reference measurements in the 110-400 Hz frequency range in a reverberant enclosure. The diffraction effects from the hard sphere enable the sensor to be made more compact by a factor of 3 compared to the sensor with suspended microphones.  相似文献   

8.
Axisymmetric vibrations of a viscous-fluid-filled piezoelectric sphere, with radial polarization, submerged in a compressible viscous fluid medium are investigated. The oscillations are harmonically driven by an axisymmetrically applied electric potential difference across the surface of the shell. A theoretical formulation cast the piezoelectric shell problem into a corresponding problem of an elastic shell with the contribution of piezoelectricity confined to slightly modified in vacuum natural frequencies and their associated mode shapes. It is noted that the fluid inside the shell will have a dominating influence on the vibrational characteristics of the submerged shell. The circular components of the natural frequency spectra closely follow those of the fluid-filled shell in vacuo. Furthermore, the corresponding damping components of those natural frequencies are rather small, making acoustic radiation and under-damped oscillation possible for an infinite number of natural frequencies. The characteristics of natural frequencies are elucidated using a fluid-filled polyvinglindene fluoride (PVDF) shell submerged in both air and water as an example. It is found that the piezoelectric parameters that contribute to the shell's natural frequencies is of a small order for thin PVDF shells, and is thereby negligible. It is noted that, with the mechanical constant typically associated with piezoelectric materials, fluid viscosity could have a significant effect on some vibrations. In certain cases, a natural frequency associated with a minimum viscous damping and a maximum of total damping (indicating highly efficient acoustic radiation) is possible with such a frequency.The vibrational characteristics, fluid loading, and energy flow are evaluated for a fluid-filled PVDF shell submerged in air and water. The inclusion of fluid inside the shell is shown to produce various narrow band peaks responses, vibrational absorbing frequencies, and non-dissipating frequencies. Those vibrational characteristics could have many potential applications. For example, the interior fluid could offer the option of generating a desired narrow band near resonant sound radiation while keeping power dissipation due to fluid viscosity to a minimum. Those well-defined narrow band characteristics also open up possibilities of using a vibrating, fluid-filled shell as a micro scale sensor for sensing and detection applications.  相似文献   

9.
蔡琛  袁樱  阚威威  杨京  邹欣晔 《中国物理 B》2016,25(12):124302-124302
In this paper, acoustic scattering from the system comprised of a cloaked object and the multilayer cloak with only one single pair of isotropic media is analyzed with a recursive numerical method. The designed acoustic parameters of the isotropic cloak media are assumed to be single-negative, and the resulting cloak can reduce acoustic scattering from an acoustic sensor while allowing it to receive external information. Several factors that may influence the performance of the cloak, including the number of layers and the acoustic dissipation of the medium are fully analyzed. Furthermore, the possibility of achieving acoustic invisibility with positive acoustic parameters is proposed by searching the optimum value in the parameter space and minimizing the scattering cross-section.  相似文献   

10.
By means of a computational method, the possibility of radiating a short acoustic pulse by a transducer in the form of a piezoceramic sphere internally filled with liquid is investigated. An electric inductive-resistive circuit is connected to the electric input of the transducer. Solution is obtained based on scheme-analogs theory for piezoceramic transducers, and spectral Fourier transform theory. The values of parameters of the system, providing minimal durations of radiated signals, are determined. Computation was carried out for different values of relative thicknesses of the transducer wall. The estimates of durations and amplitudes of the acoustic signals radiated into the external medium are obtained.  相似文献   

11.
The theory presented in the accompanying paper [Ref. 1: Zh. Tekh. Fiz. 67(1), 3 (1997); Tech. Phys. 42, 1 (1997)] for the calculation of the magnetic field and the force characteristics of an electromagnetic suspension for a superconducting body is used to carry out specific calculations of the force characteristics of a multi-coil suspension of a superconducting sphere. Formulas are obtained for the dependence of the force and the stiffness, from which it is possible to approach the problem of the stable suspension of a superconducting sphere in the field of a system of circular currents. The problem of determining the magnetic field at the sphere is analyzed and the conditions are found for which it is less than the critical field. Zh. Tekh. Fiz. 67, 10–16 (January 1997)  相似文献   

12.
We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach. An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid. The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed, with particular emphasis on the shell thickness of every layer, and the width of the Gaussian beam. The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka, as well as the shell thickness of each layer. This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave, which may benefit the improvement and development of acoustic control technology, such as trapping, sorting, and assembling a cell, and drug delivery applications.  相似文献   

13.
We report on parametric amplification in dynamic radiation force produced by a bichromatic acoustic beam in a fluid. To explain this effect we develop a theory taking into account the nonlinearity of the fluid. The theory is validated through an experiment to measure the dynamic radiation force on an acrylic sphere. Results exhibit an amplification of 66 dB in water and 80 dB in alcohol as the difference of the frequencies is increased from 10 Hz to 240 kHz.  相似文献   

14.
A method is presented to determine the response of a spherical acoustic transducer that consists of a fluid-filled piezoelectric sphere with an elastic coating embedded in infinite fluid to electrical and plane-wave acoustic excitations. The exact spherically symmetric, linear, differential, governing equations are used for the interior and exterior fluids, and elastic and piezoelectric materials. Under acoustic excitation and open circuit boundary condition, the equation governing the piezoelectric sphere is homogeneous and the solution is expressed in terms of Bessel functions. Under electrical excitation, the equation governing the piezoelectric sphere is inhomogeneous and the complementary solution is expressed in terms of Bessel functions and the particular integral is expressed in terms of a power series. Numerical results are presented to illustrate the effect of dimensions of the piezoelectric sphere, fluid loading, elastic coating and internal material losses on the open-circuit receiving sensitivity and transmitting voltage response of the transducer.  相似文献   

15.
声悬浮现象的研究   总被引:1,自引:1,他引:0  
分析了声波在垂直谐振腔内使物体悬浮于空中的条件与位置,给出了运用声悬浮现象测量声速的方法并实测了声速.  相似文献   

16.
王婷  崔志文  刘金霞  王克协 《物理学报》2018,67(11):114301-114301
考虑孔隙流体中含有少量气泡,且气泡在声波作用下线性振动,研究声波在这种孔隙介质中的传播特性.本文先由流体质量守恒方程和孔隙度微分与流体压力微分的关系推导出了含有气泡形式的渗流连续性方程;在处理渗流连续性方程中的气体体积分数时间导数时,应用Commander气泡线性振动理论导出气体体积分数时间导数与流体压强时间导数的关系,进而得到了修正的Biot形式的渗流连续性方程;最后结合Biot动力学方程求得了含气泡形式的位移场方程,便可得到两类纵波及一类横波的声学特性.通过对快、慢纵波的频散、衰减及两类波引起的流体位移与固体位移关系的考察,发现少量气泡的存在对快纵波和慢纵波的传播特性影响较大.  相似文献   

17.
The problem of steady streaming around a rigid isolated sphere in a plane standing acoustic field is considered. Existing results in the literature have been generalized to allow for noncompactness of the sphere, and the influence of fluid compressibility on the streaming behavior has been included. It is found that in the high-frequency limit of interest for which the streaming is strongest, the effective steady slip velocity at the edge of the inner boundary layer region that is responsible for driving the steady streaming in the bulk of the fluid in the outer region, has a complex variation over the surface of the sphere that depends on (i) the sphere position (with respect to the node/antinode of the acoustic field), (ii) the extent of sphere compactness, and (iii) on a well-defined function (representing compressibility effects) of the fluid Prandtl number and its ratio of specific heats. Not surprisingly, the contribution from this function is negligible when the host fluid is a liquid. The steady streaming behavior around the sphere is demonstrated with the help of flow streamlines for various cases in the diffusive limit of weak outer flow for low streaming Reynolds numbers.  相似文献   

18.
The properties of the scattered acoustic vector fields generated by simple spheres illuminated by monotonic continuous wave (CW) plane waves are investigated. Analytical solutions are derived from general acoustic pressure scattering models and analyzed for wave numbers in the resonance region. Of particular interest is the understanding of the characteristics of the scattered acoustic vector field in the near-to-far-field transition region. The separable active and reactive components of the acoustic intensity are used to investigate the structural features of the scattered field components. Numerical results are presented for the near and transition regions for a rigid sphere. A method of mapping nulls in the scattered intensity field components is described. The analysis is then extended to include a simple fluid-filled boundary and finally the evacuated thin-walled shell. Near field acoustic intensity field structures are compared against mechanical material properties of vacuous shells. The ability to extract scattered field features is illustrated with measurements obtained from a recent in-air experiment using an anechoic chamber and acoustic vector sensor probes to measure the scattered acoustic vector field from rigid spheres.  相似文献   

19.
The problem of the nonlinear interaction between the fourth sound and an acoustic wave propagating in a porous medium filled with superfluid helium is solved. Based on the Landau equations of quantum fluid dynamics and on the Biot theory of mechanical waves in a porous medium, nonlinear wave equations are derived for studying the aforementioned interaction. An expression is obtained for the vertex that determines the excitation of an acoustic wave by two waves of the fourth sound. The possibility of an experimental observation of this process is estimated.  相似文献   

20.
The resonance scattering theory (RST) is applied to the problem of sound scattering from an elastic transversely isotropic solid sphere suspended in an ideal acoustic fluid medium. The normal mode expansion technique in conjunction with the Frobenius power series solution method is utilized to deal with the material anisotropy. The presented model, which degenerates to the simple isotropic solution in the case of very weak anisotropy, is initially employed to study sensitivity of various resonant modes of vibration to perturbations in elements of the stiffness matrix. Employing a rigid background subtraction, the target’s spectrum of resonances is extracted from the relevant modal backscattering form functions and subsequently traced and discussed through Regge pole trajectory plots. Also, the backscattering form function and resonance spectra, along with the dispersion curves for selected transversely isotropic solid spheres with distinct degrees of material anisotropy, are calculated and discussed. The various modes of propagation associated with the Rayleigh, Whispering Gallery, and fluid-borne Scholte-Stoneley surface waves are identified and examined. Published in Russian in Akusticheskiĭ Zhurnal, 2008, Vol. 54, No. 2, pp. 205–218. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号