首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
Results of spectroscopic investigations and current–voltage characteristics of electrical discharges between a needle and plate electrodes in a gas mixture simulating flue gases from coal fired power plants at atmospheric pressure are presented in the paper. In these investigations, back discharge was generated at the plate electrode covered with fly ash layer in order to simulate the conditions similar to those in electrostatic precipitators. To characterize the physical processes in back discharges, the emission spectra were measured and compared with those obtained for normal corona discharge generated in the same electrode configuration but with fly ash removed from the electrode. The emission spectra provide information on elemental and molecular composition of the layer. It was also shown that discharge characteristics in flue gas are quite different from those occurring in ambient air.  相似文献   

2.
The paper presents investigations of back discharge occurring in air and flue gases produced by the process of burning of LPG (Liquefied Petroleum Gas) or charcoal at temperature ranging from 20 to 120 °C. The discharge was generated between a charge-emitting multipoint electrode and a plate covered with fly-ash layer. Current–temperature characteristics were determined for this system. The aim of this work was to determine an effect of back discharge on morphology of fly-ash layer and gas composition. It was noticed that flue gases leaving the back-discharge zone contains increased amount of NOx and CO compounds.  相似文献   

3.
Results of spectroscopic investigations and current-voltage characteristics of corona discharge and back discharge on fly-ash layer, generated in point-plane electrode geometry in air at atmospheric pressure are presented in the paper. The characteristics of both discharges are similar but differ in the current and voltage ranges of all the discharge forms distinguished during the experiments. Three forms of back discharge, for positive and negative polarity, were investigated: glow, streamer and low-current back-arc. In order to characterize ionisation and excitation processes in back discharge, the emission spectra were measured and compared with those obtained for normal corona discharge generated in the same electrode configuration but with fly ash layer removed. The emission spectra were measured in two discharge zones: near the tip of needle electrode and near the plate. Visual forms of the discharge were recorded with digital camera and referred to current-voltage characteristics and emission spectra. The measurements have shown that spectral lines emitted by back discharge depend on the form of discharge and the discharge current. From the comparison of the spectral lines of back and normal discharges an effect of fly ash layer on the discharge morphology can be determined. The recorded emission spectra formed by ionised gas and plasma near the needle electrode and fly ash layer are different. It should be noted that in back arc emission, spectral lines of fly ash layer components can be distinguished. On the other hand, in needle zone, the emission of high intensity N2 second positive system and NO γ lines can be noticed. Regardless of these gaseous lines, also atomic lines of dust layer were present in the spectrum. The differences in spectra of back discharge for positive and negative polarities of the needle electrode have been explained by considering the kind of ions generated in the crater in fly ash layer. The aim of these studies is to better understand the discharge processes encountered in electrostatic precipitators.  相似文献   

4.
Results of spectroscopic investigations of back discharge generated in point-plane electrode geometry in ambient air at atmospheric pressure are presented in the paper. The back discharge was generated for the plate electrode covered with fly ash layer. To characterize the discharge process, the emission spectra were measured for the back discharges and compared with those obtained for corona discharge generated in the same electrode configuration but with dielectric layer removed. The measurements have shown that spectral lines emitted by the back discharge depend on the forms of discharge and the discharge current. From comparison of spectral lines of back and normal discharges an effect of the dust layer on discharge morphology can be determined. In normal conditions, the emission spectra are dominated by atmospheric components (molecular nitrogen, atomic oxygen and nitrogen) but for back-discharges, additional lines due to elements and compounds in fly ash were also identified. The studies of back discharge were undertaken because this type of discharge decreases the collection efficiency in electrostatic precipitators.  相似文献   

5.
Experiments in dc supplied corona discharge in natural gas + air mixture and in combustion exhaust of natural gas + air mixture were realized. The influence of discharge on CO, CO2, NO x and other minority components was studied using IR absorption spectrometry. Production of NCO radicals in gas and consequent formation of NCO containing surface layers on a plate electrode was detected. In natural gas + air mixture after about 1 min oxygen poor combustion exhaust was produced due to slow combustion by corona discharge. Occurrence of various pulses in discharge current was typical.  相似文献   

6.
The environmental pollution is a central issue in the present industrial societies. Within that the air pollution and the removal of hazardous components of flue and exhaust gases are very much important.In this paper the target is to decrease of the NOx emission by means of a technology similar to that is used in the electrostatic precipitators. In most of the papers dealing with this technique cylindrical precipitator is used as a discharge chemical reactor, and fast rising electric discharges are applied for energizing the reactor. In the industry the over helming majority of the electrostatic precipitators are plate type one.In the cylindrical precipitator the discharge electrode is parallel with the gas flow, and the corona discharge filament is perpendicular to both of them. In the case of plate type industrial electrostatic precipitator the discharge electrodes are positioned vertically, and the flow of the flue gas is horizontal. Consequently, the discharge filaments are mainly perpendicular to both the flow and the discharge electrode.In cylindrical precipitator the decomposition of NOx is done in one filament very soon, but there is no chance to modify the byproducts with a new pulse, because the energization is the same for the whole length of the discharge electrode.In the present paper a cylindrical precipitator, a plate type precipitator with horizontal electrode, and a plate type precipitator with vertical electrode were tested. The total length of the discharge electrodes of all of the precipitators was the same.The results of the NOx decomposition were experimentally determined, and the differences between the precipitators were investigated. The cylindrical and the plate type precipitators with vertical electrodes had shown basically similar decomposition rate, while the plate type one with horizontal discharge electrode had proven inferior to the others.  相似文献   

7.
The back-discharge is a type of discharge that takes place in the presence of corona discharge and occurs at an electrode covered with a dielectric layer of resistivity higher than about 108 Ω m. Back-discharge can be observed in electrostatic precipitators when dust covering the collection electrode has low conductivity. In this paper, the studies of back-discharge generated in ambient air, in point-to-plane geometry with the plate electrode covered with fly ash are presented. The discharge is characterised in terms of its visual forms, current–voltage characteristics, and light emission spectra. Three forms of back-discharge were investigated: glow discharge, streamers, and low-current back-arc discharge. The current of the back-arc discharge was only a few milliamps. The discharge was stabilised by a high series resistance. It was noted that the voltage of ignition of the back-discharge for negative polarity is lower than for a positive one. Spectroscopic measurements of emission spectra provided information on elements present in the discharge column. The elements present in the fly ash, including toxic metals, can be re-entrained into the gas as particles or can be emitted as ions or neutrals during the discharge, and can decrease the collection efficiency of electrostatic precipitators. These elements were detected in the emission spectra. The effect of the discharge on the fly ash layer was also discussed. It was observed that sinter-like leftovers remain in the dust layer after a back-arc discharge.  相似文献   

8.
Fly ash deposition on boiler surfaces is a major operational problem encountered in biomass-fired boilers. Understanding deposit formation, and developing modelling tools, will allow improvements in boiler efficiency and availability. In this study, deposit formation of a model biomass ash species (K2Si4O9) on steel tubes, was investigated in a lab-scale Entrained Flow Reactor. K2Si4O9 was injected into the reactor, to form deposits on an air-cooled probe, simulating deposit formation on superheater tubes in boilers. The influence of flue gas temperature (589 – 968°C), probe surface temperature (300 – 550°C), flue gas velocity (0.7 – 3.5?m/s), fly ash flux (10,000 – 40,000?g/m2h), and probe residence time (up to 60?min) was investigated. The results revealed that increasing flue gas temperature and probe surface temperature increased the sticking probability of the fly ash particles, thereby increasing the rate of deposit formation. However, increasing flue gas velocity resulted in a decrease in the deposit formation rate, due to increased particle rebound. Furthermore, the deposit formation rate increased with probe residence time and fly ash flux. Inertial impaction was the primary mechanism of deposit formation, forming deposits only on the upstream side of the steel tube. A mechanistic model was developed for predicting deposit formation in the reactor. Deposit formation by thermophoresis and inertial impaction was incorporated into the model, and the sticking probability of the ash particles was estimated by accounting for energy dissipation due to particle deformation. The model reasonably predicted the influence of flue gas temperature and fly ash flux on the deposit formation rate.  相似文献   

9.
Torrefied wood originating from beetle-killed trees is an abundant biomass fuel that can be co-fired with coal for power generation. In this work, pulverized torrefied wood, a bituminous coal (Sufco coal) and their blended fuel with a mixing ratio of 50/50 wt.%, are burned in a 100-kW rated laboratory combustor under similar conditions. Ash aerosols in the flue gas and ash deposits on a temperature-controlled surface are sampled during combustion of the three fuels. Results show that ash formation and deposition for wood combustion are notably different from those for coal combustion, revealing different mechanisms. Compared to the coal, the low-ash torrefied wood produces low concentrations of fly ash in the flue gas but significantly increased yields (per input ash) of ash that has been vaporized. All the mineral elements including the semi- or non-volatile metals in the wood are found to be more readily partitioned into the PM10 ash than those in the coal. The inside layer deposits sticking to the surface and the loosely bound outside deposits exposed to the gas both show a linear growth in weight during torrefied wood test. Unlike coal combustion, in which the concentration of (vaporized) ash PM1 controls the inside deposition rate, wood combustion shows that the formation of porous bulky deposits by the condensed residual ash dominates the inside deposition process. Co-firing removes these differences between the wood and coal, making the blended fuel to have more similar fly ash characteristics and ash deposition behavior to those of the bituminous coal. In addition, results also show some beneficial effects of co-firing coal with torrefied wood, including reduction of the total deposition rate and the minimization of corrosive alkali species produced by wood.  相似文献   

10.
The aim of this paper is to investigate the influence of NH3 additive (540–1470 ppm) on the conversion of NO2 and the creation of NO and N2O in a mixture of N2:O2:CO2: NO2:NH3 subjected to the so-called direct current (dc) corona discharge. The dc corona discharge was generated in a needle-to-plate reactor. Seven positively polarized needles were used as one electrode and a stainless steel plate as the other. The time-averaged discharge current was varied from 0 to 7 mA. It was found that the dc corona discharge decomposed NO2 and produced NO and N2O. The reduction of NO2 was higher without NH3 additive if the residence time of the operating gas was relatively short. However, in a longer corona discharge processing the NH3 additive may be useful for reduction of NO2.Supports from the Research and Development Commitee (KBN) under Programme KBN 0889/P4/93/04 and the Polish Academy of Sciences within IMP 3.1 project are gratefully acknowledged.  相似文献   

11.
This paper concerns the influence of a direct current (dc) corona discharge on production and reduction of NO, NO2 and N2O in N2:O2:CO2 and N2:O2:CO2:NO2 mixtures. The corona discharge was generated in a needle-to-plate reactor. The positively polarized electrode consisted of 7 needles. The grounded electrode was a stainless steel plate. The gas flow rate through the reactor was varied from 28 to 110 cm3/s. The time-averaged discharge current ranged from 0 to 6 mA. It was found that in the N2:O2:CO2 mixture the corona discharge produced NO, NO2 and N2O. In the N2:O2:CO2:NO2 mixture the reduction of NO2 was between 6–56%, depending on the concentration of O2, gas flow rate and corona discharge current. The NO2 reduction was accompanied by production of NO and N2O. The results show that efficient reduction of nitrogen oxides by a corona discharge cannot be expected in the mixtures containing N2 and O2 if reducing additives are not employed.  相似文献   

12.
NOx removal methods using plasma chemical reactions in nonthermal plasmas have been widely studied. In this paper, the effects of the addition of fly ash on NOx removal using short-pulsed discharge plasmas are described. Fly ash which had been collected from a coal-burning thermal electrical power plant was used. Experiments were performed using four different mixtures of gases which included NO. These were (N2+NO), (N2+NO+O2), (N2+NO+H2O), and (N2+NO+O2+H 2O). These gas mixtures were used either with or without the addition of fly ash. The initial concentration of NO was fixed at 200 ppm (NO parts per million of the gas mixture), The study of the NOx (NO+NO2) removal was performed with the fly ash, as it is relevant to real situations in coal power plants. The results show that the presence of fly ash decreased the NOx removal rate slightly in the case of dry gas mixtures while it increased the NOx removal rate substantially in the case of wet gas mixtures. These results suggest that the presence of fly ash in the flue gases, which also contain a few percentages of moisture, would be advantageous to the treatment of flue gases emitted from thermal power plants for the removal of nitrogen oxides  相似文献   

13.
An analysis of the electrostatic gas cleaning fundamental phenomenon shows an essential influence of discharge electrode construction on the gas cleaning process efficiency.In the physical model tests there were used rigid discharge electrodes with corona emitting elements of various geometries. Different constructions of discharge electrode were tested in the aspect of discharge current uniform distribution on collecting electrode surfaces. Measurements of discharge current distribution has been carried out for discharge electrodes with different spike shapes and in different electric field geometry. The research aim was to determine the optimal discharge electrode construction ensuring high collection efficiency of fine particles. Collection efficiency measurements of selected fly ash samples (from coal fired boilers) were carried out on a laboratory testing bench in a horizontal electrostatic precipitator model.  相似文献   

14.
This study investigates how fly ash nanofluids affect the thermal performance of a two-phase closed thermosyphon at various states of operation. The utilization of nanofluids obtained from X2O3-type oxides, such as Al2O3, Fe2O3, or CuO, on the improvement of two-phase closed thermosyphon performance was reported in a number of studies in the literature. The present study experimentally demonstrated the effect of using a nanofluid obtained from fly ash comprised of various types of metal oxides in varying ratios on improving the performance of a two-phase closed thermosyphon. The fly ash was obtained from the flue gas that was captured in the cyclones of the Yatagan thermal power plant (Turkey). Triton X-100 (Dow Chemical Company) dispersant was used in the study to produce the 0.2% (wt) fly ash/water nanofluid via direct synthesis. A straight copper tube with an inner diameter of 13 mm, outer diameter of 15 mm, and length of 1 m was used as the two-phase closed thermosyphon. The nanofluid filled 33.3% (44.2 ml) of the volume ofthe two-phase closed thermosyphon. Three heating power levels (200, 300, and 400 W) were used in the experiments with three different flow rates of cooling water (5, 7.5, and 10 g/s) used in the condenser for cooling the system. A increase of 26.39% was achieved in the efficiency of the two-phase closed thermosyphon when 4% (wt) fly ash containing nanofluid was used to replace deionized water at a heat load of 200 W and with a cooling water flow rate of 5 g/s.  相似文献   

15.
The release of arsenic vapors (As3+) during high-arsenic coal combustion not only raises serious environmental concerns, but also causes catalyst deactivation in selective catalytic reduction (SCR) systems. To illuminate the mechanisms involved in the transformation of arsenic vapors towards less troublesome arsenates (As5+) during coal combustion, the accessory minerals in the high-arsenic coal were identified and the association relationship of these compounds with arsenic in fly ash was estimated. The results showed that Si/Al were the main inorganic elements in high-arsenic coal while the content of Ca was quite low. Ca was mostly transformed into sulfates during coal combustion and the effect of Ca on the arsenic transformation was limited. Al/Fe played a more significant role in arsenic speciation transformation and arsenic in the fly ash was predominantly bound with Al/Fe-oxides as arsenates. It was further confirmed that Al in kaolin/metakaolin showed good capacity on arsenic capture. In addition, few arsenic vapors were captured through the physical adsorption mechanism and the large fraction of As3+ in some fine particles was mostly attributed to the chemical reactions between arsenic vapors and Al-compounds. Meanwhile, a certain amount of arsenic vapors were converted into As2O5(s) under the influence of SCR catalyst and then carried by flue gas to participate in fly ash. Besides, part of arsenic distributed in the fly ash was through the stabilization of ash matrix in high temperature conditions. The transformation of arsenic from vapors towards particulate arsenic favored arsenic emission control by particulate matter control devices.  相似文献   

16.
The spatial and surface chemical products and effectiveness of NOx removal (abbreviated deNOx) under the corona discharge action at atmospheric pressure were investigated. The influence of high-voltage electrode material on a discharge character and the heterogeneous influence of the electrode surface are also reported in the article. The qualitative analysis was performed using infrared absorption spectrometry. Special attention was paid to NO and NO2 calibration measurements.  相似文献   

17.
A high-temperature electrostatic precipitator (ESP) presents a good solution for hot gas cleaning, which can remove fly ash from pyrolysis gas at temperatures higher than the tar dew point. In this paper, the characteristics of negative DC corona discharge in air and simulated coal pyrolysis gas were studied. The removal of coal pyrolysis furnace fly ash (ash A) was investigated and compared with that of coal-fired power plant fly ash (ash B) in ESP with a temperature ranging from 300?K to 900?K. The current density of simulated gas was higher than that of air under the same discharge voltage and at different temperatures. The simulated gas also had a higher spark voltage and a lower onset voltage compared with air. The fractional collection efficiency of ash A was lower for particles with diameters of larger than 0.1?µm at high temperature, compared with ash B. A lower collection efficiency in simulated gas was obtained for particles with diameters of less than 0.1?µm compared with air. The collection efficiency of submicron particles in simulated gas was usually higher than it in air, especially for particles with diameters of less than 0.04?µm. In simulated gas, the overall collection efficiency of ash A was obviously lower than that of ash B, especially at high temperature. From 300?K to 700?K, the collection efficiencies of both ash samples were as high as above 93%, but the collection efficiency of ash A in simulated gas decreased to 78.7% at 900?K.  相似文献   

18.
The NO and SO2 gas conversion processes in a pulsed corona discharge field have been studied. The experiments were conducted to investigate the influences of water vapor and fly ash addition on the conversion efficiencies of NO and SO2. Experimental results show that positive pulsed corona discharge can facilitate NO and SO2 conversion processes, and the conversion efficiencies of NO and SO2 are primarily dependent on the radicals OH, O and the active species O3, HO2, H2O2, etc. With water vapor addition, SO2 conversion efficiency is improved, but NO conversion process is restrained. Low fly ash concentration helps to enhance the conversion of NO and SO2; however, the conversion efficiencies of NO and SO2 are drastically degraded by high fly ash concentration addition. The synergistic effects of water vapor and fly ash addition strengthen the chemical adsorption ability of the fly ash surface, which results in a considerable improvement in the conversion of NO and SO2. Furthermore, the specific input energy plays an important role in NO and SO2 conversion efficiencies. Measured conversion efficiencies of NO and SO2 reach about 60% and 90%, respectively, under the conditions tested.  相似文献   

19.
Non-thermal plasma (NTP) and combined plasma-MnO2 catalytic (CPMC) air cleaners were tested for removal of low-concentration benzene in air. Both air cleaners were made of stainless steel needle matrix plate and used DC corona discharger. The effects of discharge power and relative humidity (RH) on benzene removal efficiency were investigated in a closed chamber. The intermediate products produced in purification processes were analyzed using gas chromatography-mass spectrometer (GC-MS). The concentrations of discharge byproducts and CO2 selectivity produced in both processes were also compared. It was found that the benzene removal efficiency increased with discharge power in both systems; With the increase of RH in air, benzene removal efficiency firstly increased and then decreased in NTP while it gradually decreased in CPMC. For a fixed discharge power of 9 W and RH of 20% in CPMC, the conversion of benzene increased from 82.9% to 89.6%, the CO2 selectivity increased from 38% to 80%, the concentration of O3 decreased from 25.3 ppm to 1.3 ppm, and NO2 formation decreased from 234 ppm to 25.7 ppm, compared with NTP.  相似文献   

20.
The object of this experimental investigation was the influence of temperature and humidity on the efficiency of removal of NO x by a pulsed corona discharge from a mixture N2 : O2 : CO2 : H2O : NO simulating a combustion flue gas. The pulsed corona discharge was generated in a wire-to-cylinder reactor. It was found that removal of NO x was most efficient when H2O concentration corresponded with the saturated vapour pressure. In the case of the operating gas containing constant H2O concentration removal of NO x decreased with increasing temperature of the operating gas. Dedicated to Prof. Jan Janča on the occasion of his 60th birthday. This work is devoted to the 60th birthday of Professor Jan Janca, our good colleague, merited teacher, researcher and famous physicist, discussion with whom stimulated this and other our work during years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号