首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
The classical model of voltage-gated ion channels assumes that according to a Markov process ion channels switch among a small number of states without memory, but a bunch of experimental papers show that some ion channels exhibit significant memory effects, and this memory effects can take the form of kinetic rate constant that is fractal. Obviously the gating character of ion channels will affect generation and propagation of action potentials, furthermore, affect generation, coding and propagation of neural information. However, there is little previous research on this series of interesting issues. This paper investigates effects of fractal gating of potassium channel subunits switching from closed state to open state on neuronal behaviours. The obtained results show that fractal gating of potassium channel subunits switching from closed state to open state has important effects on neuronal behaviours, increases excitability, rest potential and spiking frequency of the neuronal membrane, and decreases threshold voltage and threshold injected current of the neuronal membrane. So fractal gating of potassium channel subunits switching from closed state to open state can improve the sensitivity of the neuronal membrane, and enlarge the encoded strength of neural information.  相似文献   

2.
Ion photon emission microscopy(IPEM) is a new ion-induced emission microscopy. It employs a broad ion beam with high energy and low fluence rate impinging on a sample. The position of a single ion is detected by an optical system with objective lens, prism, microscope tube and charge coupled device(CCD). A thin ZnS lilm doped with Ag ions is used as a luminescent material. Generation efficiency and transmission efficiency of photons in the ZnS(Ag) film created by irradiated Cl ions are calculated. A single Cl ion optical microscopic image is observed by high quantum efficiency CCD. The resolution of a single Cl ion given in this IPEM system is 6μm. Several factors influencing the resolution are discussed. A silicon diode is used to collect the electrical signals caused by the incident ions. Effective and accidental coincidence of optical images and electronic signals are illustrated. A two-dimensional map of single event effect is drawn out according to the data of effective coincidence.  相似文献   

3.
The hydration structure properties of different alkali metal ions with eight water molecules and potassium ions with different numbers of water molecules are studied using the mixed density functional theory, B3LYP, with 6-3110 basis set. The hydration structures are obtained from structure optimization and the optimum numbers of water molecules in the innermost hydration shell for the alkali metal ions are found. Some useful information about the ion channel selectivity is presented.  相似文献   

4.
An injection-seeded single-resonant optical parametric oscillator(SROPO) with single frequency nanosecond pulsed 2.05 μm wavelength output is presented. Based on two potassium titanyl phosphate crystals and pumped by a 1064 nm single frequency laser pulse, injection seeding is performed successfully by using the ramp-hold-fire technique in a ring cavity with a bow-tie configuration. The SROPO provides 2.65 m J single frequency signal pulse output with a 17.6 ns pulse duration at a 20 Hz repetition rate. A near-diffraction-limited beam is achieved with a beam quality factor M~2 of about 1.2. The spectrum linewidth of the signal pulse is around 26.4 MHz,which is almost the Fourier-transform-limited value.  相似文献   

5.
Grid-enhanced plasma source ion implantation (GEPSⅡ) is a newly proposed technique to modify the inner-surface properties of a cylindrical bore. In this paper, a two-ion fluid model describing nitrogen molecular ions N2^ and atomic ions N^ is used to investigate the ion sheath dynamics between the grid electrode and the inner surface of a cylindrical bore during the GEPSⅡ process, which is an extension of our previous calculations in which only N2^ was considered.Calculations are concentrated on the results of ion dose and impact energy on the target for different ion species ratios in the core plasma. The calculated results show that more atomic ions N^ in the core plasma can raise the ion impact energy and reduce the ion dose on the target.  相似文献   

6.
The ionoluminescenee(IL) spectra of a ZnO single crystal irradiated with 2.5 MeVH~+ ions reveal that its intensity decreases with increasing the ion fluence, which indicates that the concentration of lumineseence centers decreases with irradiation. The Gaussian decomposition results of the ZnO IL spectrum with a fluence of1.77×10~(11) ions/cm~2 show that the spectrum is a superposition of energy levels centered at 1.75 eV, 2.10 eV, 3.12 eV and 3.20 eV. The four peaks are associated with electronic transitions from CB to V_(Zn), CB to O_i,Zn_i to VB and the decay of self-trapped excitons, respectively. The results of single-exponential fitting demonstrate that different luminescent centers have different radiation resistance, which may explain why the emission decreases more slowly in the NBE band than in the DBE band. The agglomeration of larger point clusters accounts for the decrease in the concentration of luminescence centers and the increase in the concentration of non-luminescence centers, which indicates that the defect clusters induced by ion implantation act as nonradiative recombination centers and suppress light emission. The results of the photoluminescence spectra of a virgin ZnO single crystal and a ZnO single crystal irradiated with a fluence of 3.4 x 1014 ions/cm~2 show that compared with the virgin ZnO,the emission intensity of irradiated ZnO decreases by nearly two orders of magnitude, which demonstrates that the irradiation effect reduces radiative recombination and enhances nonradiative recombination. The conclusions of photoluminescence are consistent with the IL results.  相似文献   

7.
The magnetic properties of cobalt-based oxypnictides SmCoAsO are investigated by measuring magnetization,magnetoresistance and specific heat.The compound undergoes a ferromagnetic(FM) transition around Tc of 80 K,and a ferromagnetic to antiferromagnetic(AFM) transition below TN1 of about 45 K,and finally an AFM order of Sm ion at TN2 of 5.6 K.The weak FM order should originate from the itinerant 3d electrons of Co ions in the CoAs layers.We propose that the magnetic structure should be A-type AFM,which means that the FM order remains within the CoAs layer and the magnetic coupling between the CoAs layers becomes AFM below TN1 of 45 K.The AFM coupling between the CoAs layers should be very weak.A magnetic field μ0H of about 2 T may cause an AFM-FM metamagnetic transition.A rich magnetic phase diagram is established and the interplay between the 3d electrons of Co ions and 4f electrons of Sm ions is discussed.  相似文献   

8.
We propose a scheme to generate the Greenberger-Horne-Zeilinger (GHZ) states and the cluster states of many trapped ions. In the scheme, the ion is illuminated by a single laser tuned to the first lower vibrational sideband. The scheme only requires resonant interactions. Thus the scheme is very simple and the quantum dynamics operation can be realized at a high speed, which is important in view of decoherence.  相似文献   

9.
唐军  贾亚  易鸣  马军  余光 《中国物理快报》2008,25(3):1149-1152
Based on a modified intracellular Ca^2+ model involving diffusive coupling of two calcium ion channel dusters, the effects of coupling on calcium signalling are numerically investigated. The simulation results indicate that the diffusive coupling of dusters together with internal noise determine the calcium dynamics of single duster, and for either homogeneous or heterogeneous coupled dusters, the synchronization of dusters, which is important to calcium signalling, is enhanced by the coupling effect.  相似文献   

10.
G-quadruplexes(GQs) are guanine-rich, non-canonical nucleic acid structures that play fundamental roles in biological processes. The topology of GQs is associated with the sequences and lengths of DNA, the types of linking loops, and the associated metal cations. However, our understanding on the basic physical properties of the formation process and the stability of GQs is rather limited. In this work, we employed ab initio, molecular dynamics(MD), and steered MD(SMD)simulations to study the interaction between loop bases and ions, and the effect on the stability of G-quadruplex DNA, the Drude oscillator model was used in MD and SMD simulations as a computationally efficient manner method for modeling electronic polarization in DNA ion solutions. We observed that the binding energy between DNA bases and ions(K+/Na+)is about the base stacking free energies indicates that there will be a competition among the binding of M+-base, H-bonds between bases, and the base-stacking while ions were bound in loop of GQs. Our SMD simulations indicated that the side loop inclined to form the base stacking while the loop sequence was Thy or Ade, and the cross-link loop upon the G-tetrads was not easy to form the base stacking. The base stacking side loop complex K+was found to have a good stabilization synergy. Although a stronger interaction was observed to exist between Cyt and K+, such an interaction was unable to promote the stability of the loop with the sequence Cyt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号