首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
We demonstrate that in a triangular configuration of an optical lattice of two atomic species a variety of novel spin-1/2 Hamiltonians can be generated. They include effective three-spin interactions resulting from the possibility of atoms tunneling along two different paths. This motivates the study of ground state properties of various three-spin Hamiltonians in terms of their two-point and n-point correlations as well as the localizable entanglement. We present a Hamiltonian with a finite energy gap above its unique ground state for which the localizable entanglement length diverges for a wide interval of applied external fields, while at the same time the classical correlation length remains finite.  相似文献   

2.
田东平  秦猛  陶应娟  胡明亮 《中国物理 C》2007,31(11):1082-1085
采用Negativity研究了匀强磁场下自旋为1的3-qutrit海森堡XX模型的基态纠缠和热纠缠. 分别探讨了纠缠伴随杂质, 温度、磁场的变化情况. 研究表明磁场的作用主要是降低纠缠, 磁场并不改变临界温度. 杂质的加入有利于增加纠缠, 临界温度的改变来自杂质参数J1的变化. 可以通过调节温度T, 杂质参数J1和磁场B来控制纠缠.  相似文献   

3.
Connecting individual quantum systems through quantum channels leads to develop quantum networks crucial to perform multipartite communication or quantum cryptography. We present two techniques to generate entanglement among different parties at larger scale. In the first approach cavity QED technique is used to produce extended entanglement in atomic internal and external degrees of freedom. In this scheme we entangle two tagged atoms in their momentum state with cavity fields. Later, interaction of two auxiliary atoms with the two cavity fields in non-dispersive and dispersive fashion transforms the atoms–fields entanglement to atoms–atoms entanglement. Quantum measurement on auxiliary atoms generates extended entangled state in atomic degrees of freedom. In the second approach we take three cavities in which the two cavities have separate entangled state with third cavity in two modes which are distinguishable. Applying quantum measurement process on third cavity, we develop extended entangled state among the three cavities. We provide experimental parameters to realize the work in laboratory experiment.  相似文献   

4.
We study the two-body entanglement and mixture in a three-qubit XXZ spin chain in thermal equilibrium state at temperature T with an external magnetic field B. The effects of the magnetic field, the anisotropy and the temperature on the entanglement and mixture are considered. We show that the ground states in this system are fully characterized and distinguished by both entanglement and mixture. Thermal entanglement versus the mixture of all two-spin states is investigated. All pairwise states provide an upper bound on the entanglement for a fixed mixture, and some part of the boundary reaches the boundary allowed by physics. As a result, maximally entangled mixed states can be generated by controlling magnetic field and temperature. Especially, in the ground state of the whole system, the explicit forms of maximally entangled mixed states are given. The results provide a new way to generate maximally entangled mixed states and control entanglement.  相似文献   

5.
We show that strong squeezing and entanglement can be generated at the output of a cavity containing atoms interacting with two fields in a coherent population trapping situation, on account of a nonlinear Faraday effect experienced by the fields close to a dark-state resonance in a cavity. Moreover, the cavity provides a feedback mechanism allowing to reduce the quantum fluctuations of the ground state spin, resulting in strong steady state spin squeezing.  相似文献   

6.
王琪  王晓茜 《物理学报》2013,62(22):220301-220301
在一维倾斜场伊辛模型中, 利用并发度和Q测量函数分别对系统的两体纠缠和整体纠缠进行度量, 通过讨论系统中量子纠缠的动力学特性, 能够体现出系统的可积和不可积行为. 由系统基态的纠缠特性可以发现只要倾角不为零时, 系统的Q测量函数会随着磁场的增大而减少, 而用并发度刻画的系统的相变特性, 随着磁场倾角的增大发生了变化. 考虑系统的动力学行为发现, 在一维倾斜场伊辛模型中, 不可积性会抑制两体纠缠, 却促进系统整体纠缠生成. 关键词: 伊辛模型 不可积性 两体纠缠 整体纠缠  相似文献   

7.
We propose a realization of a scalable, high-performance quantum processor whose qubits are represented by the ground and subradiant states of effective dimers formed by pairs of two-level systems coupled by resonant dipole-dipole interaction. The dimers are implanted in low-temperature solid host material at controllable nanoscale separations. The two-qubit entanglement either relies on the coherent excitation exchange between the dimers or is mediated by external laser fields.  相似文献   

8.
We propose a scheme based on using the singlet ground state of an electron spin pair in a double-quantum-dot nanostructure as a suitable setup for detecting entanglement between electron spins via the measurement of an optimal entanglement witness. Using time-dependent gate voltages and magnetic fields the entangled spins are separated and coherently rotated in the quantum dots and subsequently detected at spin-polarized quantum point contacts. We analyze the coherent time evolution of the entangled pair and show that by counting coincidences in the four exits an entanglement test can be done. This setup is close to present-day experimental possibilities and can be used to produce pairs of entangled electrons "on demand."  相似文献   

9.
We investigate the entanglement-related features of the eigenstates of two exactly soluble atomic models: a one-dimensional three-electron Moshinsky model, and a three-dimensional two-electron Moshinsky system in an external uniform magnetic field. We analytically compute the amount of entanglement exhibited by the wavefunctions corresponding to the ground, first and second excited states of the three-electron model. We found that the amount of entanglement of the system tends to increase with energy, and in the case of excited states we found a finite amount of entanglement in the limit of vanishing interaction. We also analyze the entanglement properties of the ground and first few excited states of the two-electron Moshinsky model in the presence of a magnetic field. The dependence of the eigenstates’ entanglement on the energy, as well as its behaviour in the regime of vanishing interaction, are similar to those observed in the three-electron system. On the other hand, the entanglement exhibits a monotonically decreasing behavior with the strength of the external magnetic field. For strong magnetic fields the entanglement approaches a finite asymptotic value that depends on the interaction strength. For both systems studied here we consider a perturbative approach in order to shed some light on the entanglement’s dependence on energy and also to clarify the finite entanglement exhibited by excited states in the limit of weak interactions. As far as we know, this is the first work that provides analytical and exact results for the entanglement properties of a three-electron model.  相似文献   

10.
By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field h(c) = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h < 2.0), a logarithmically divergent behavior of block entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号