首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 504 毫秒
1.
We studied the correction of the quantum tunneling radiation of fermions with spin 1/2 in Kerr anti-de-Sitter black hole. First, the dynamic equation of spin 1/2 fermions was corrected using Lorentz’s violation theory. Second, the new expressions of the fermions quantum tunneling rate,the Hawking temperature of the black hole and the entropy of the black hole were obtained according to the corrected fermions dynamic equation. Our results show that Hawking temperature increases with the enhancement of both the coupling strength and the radial component of ether-like field, but is independent of non-radial components of ether-like field.At last, some comments are made on the results of our work.  相似文献   

2.
The original derivation of Hawking radiation shows the complete evaporation of black holes. However, theories of quantum gravity predict the existence of the minimal observable length. In this paper, we investigate the tunneling radiation of the scalar particles by introducing the quantum gravity effects influenced by the generalized uncertainty principle. The Hawking temperatures are not only determined by the properties of the black holes, but also affected by the quantum numbers of the emitted particles. The quantum gravity corrections slow down the increase of the temperatures. The remnants are found during the evaporation.  相似文献   

3.
林恺  杨树政 《中国物理 B》2011,20(11):110403-110403
A new simpler mathematic method is proposed to study fermions tunneling from black holes. According to this method, by using semiclassical approximation theory, it simplifies the Dirac equation of curved spacetime and then the relationship of the gamma matrix and the component of contravariant metric is considered in order to transform the set of difficult quantum equations into a simple equation. Finally, the fermion tunneling and Hawking radiation of black holes are obtained. The method is very effective and simple, and we will take the Schwarzschild black hole with global monopole and the higher-dimensional Reissner-Nordstrom de Sitter black hole as two examples to show the fact.  相似文献   

4.
We investigate the massive vector particles' Hawking radiation from the neutral rotating Anti-de Sitter(AdS) black holes in conformal gravity by using the tunneling method.It is well known that the dynamics of massive vector particles are governed by the Proca field equation.Applying WKB approximation to the Proca equation,the tunneling probabilities and radiation spectrums of the emitted particles are derived.Hawking temperature of the neutral rotating AdS black holes in conformal gravity is recovered,which is consistent with the previous result in the literature.  相似文献   

5.
Recent research shows that Hawking radiation from black hole horizoncan be treated as a quantum tunneling process, and fermions tunneling method can successfully recover Hawking temperature. In this tunneling framework, choosing a set of appropriate matrices γμ is an important technique for fermions tunneling method. In this paper, motivated by Kerner and Man's fermions tunneling method of 4 dimension black holes, we further improve the analysis to investigate Hawking tunneling radiation from a rotating charged black hole in 5-dimensional gauged supergravity byconstructing a set of appropriate matrices γμ for general covariant Dirac equation. Finally, the expected Hawking temperature of the black hole is correctly recovered, which takes the same form as that obtained by other methods. This method is universal, and can also be directly extend to the other different-type 5-dimensional charged black holes.  相似文献   

6.
It has been shown recently that information is lost in the Hawking radiation of the linear dilaton black holes in various theories when applying the tunneling formalism of Parikh and Wilczek without considering quantum gravity effects. In this paper, we recalculate the emission probability by taking into account the log-area correction to the Bekenstein-Hawking entropy and the statistical correlation between quanta emitted. The crucial role of the quantum gravity effects on the information leakage and black hole remnant is highlighted. The entropy conservation of the linear dilaton black holes is discussed in detail. We also model the remnant as an extreme linear dilaton black hole with a pointlike horizon in order to show that such a remnant cannot radiate and its temperature becomes zero. In summary, we show that the information can also leak out of the linear dilaton black holes together with preserving unitarity in quantum mechanics.  相似文献   

7.
Taking into account effects of quantum gravity, we investigate the evaporation of an Einstein-Maxwell-Dilaton-Axion black hole. The corrected Hawking temperature is gotten respectively by the scalar particle’s and the fermion’s tunneling across the horizon. This temperature is lower than the original one derived by Hawking, which means quantum gravity effects slow down the rise of the temperature.  相似文献   

8.
We analyze certain aspects of BTZ black holes in massive theory of gravity. The black hole solution is obtained by using the Vainshtein and dRGT mechanism, which is asymptotically AdS with an electric charge. We study the Hawking radiation using the tunneling formalism as well as analyze the black hole chemistry for such system. Subsequently, we use the thermodynamic pressure-volume diagram to explore the efficiency of the Carnot heat engine for this system. Some of the important features arising from our solution include the non-existence of quantum effects, critical Van der Walls behaviour, thermal fluctuations and instabilities. Moreover, our solution violates the Reverse Isoperimetric Inequality and, thus, the black hole is super-entropic, perhaps which turns out to be the most interesting characteristics of the BTZ black hole in massive gravity.  相似文献   

9.
The black hole information problem provides important clues for trying to piece together a quantum theory of gravity. Discussions on this topic have generally assumed that in a consistent theory of gravity and quantum mechanics, quantum theory is unmodified. In this review, we discuss the black hole information problem in the context of generalisations of quantum theory. In this preliminary exploration, we examine black holes in the setting of generalised probabilistic theories, in which quantum theory and classical probability theory are special cases. We are able to calculate the time it takes information to escape a black hole, assuming that information is preserved. In quantum mechanics, information should escape pure state black holes after half the Hawking photons have been emitted, but we find that this get’s modified in generalisations of quantum mechanics. Likewise the black-hole mirror result of Hayden and Preskill, that information from entangled black holes can escape quickly, also get’s modified. We find that although information exits the black hole as predicted by quantum theory, it is fairly generic that it fails to appear outside the black hole at this point—something impossible in quantum theory due to the no-hiding theorem. The information is neither inside the black hole, nor outside it, but is delocalised.  相似文献   

10.
The behavior of a scalar field theory near the event horizon in a rotating black hole background can be effectively described by a two dimensional field theory in a gauge field background. Based on this fact, we proposal that the quantum tunneling from rotating black hole can be treated as “charged” particle’s tunneling process in its effectively two dimensional metric. Using this viewpoint and considering the corresponding “gauge charge” conservation, we calculate the non-thermal tunneling rate of Kerr black hole and Myers–Perry black hole, and results are consistent with Parikh–Wilczek’s original result for spherically symmetric black holes. Especially for Myers–Perry black hole which has multi-rotation parameters, our calculation fills in the gap existing in the literature applying Parikh–Wilczek’s tunneling method to various types black holes. Our derivation further illuminates the essential role of effective gauge symmetry in Hawking radiation from rotating black holes.  相似文献   

11.
It is well known that Hawking radiation can be treated as a quantum tunneling process of particles from the event horizon of black hole. In this paper, we attempt to apply the massive vector bosons tunneling method to study the Hawking radiation from the non-rotating and rotating dilaton black holes. Starting with the Proca field equation that govern the dynamics of massive vector bosons, we derive the tunneling probabilities and radiation spectrums of the emitted vector bosons from the static spherical symmetric dilatonic black hole, the rotating Kaluza-Klein black hole, and the rotating Kerr-Sen black hole. Comparing the results with the blackbody spectrum, we satisfactorily reproduce the Hawking temperatures of these dilaton black holes, which are consistent with the previous results in the literature.  相似文献   

12.
We extend the Parikh–Wilczek method from Einstein gravity spacetime to Gauss–Bonnet modified gravity and study the tunneling radiation of particles across the event horizon of a d-dimensional Gauss–Bonnet Anti de-Sitter black hole. The emission rate of a particle is calculated. It is shown that the emission rate of massive particles takes the same functional form as that of massless particles although that their motion equations tunneling across the horizon are different. It is also shown that the emission spectrum deviates from the pure thermal spectrum but is consistent with an underlying unitary theory. In addition, significant but interesting phenomenon is demonstrated when Gauss–Bonnet term is present. The expression of the emission rate for a black hole in Gauss–Bonnet gravity differs from that for a black hole in Einstein gravity. After adopting the conventional tunneling rate, we obtain the expression of the entropy of the Gauss–Bonnet black hole, which is in accordance with the early results but does not obey the area law. So the research of tunneling radiation in this paper may serve as a new perspective of understanding the thermodynamics of black holes in Gauss–Bonnet gravity.  相似文献   

13.
In this paper, using the Parikh-Wilczek tunneling framework, we first calculate the emission rates of non-rotating BTZ black holes and rotating BTZ black holes to second order accuracy. Then, by assuming that the emission process satisfies an underlying unitary theory, we obtain the corrected entropy of the BTZ black holes. A log term emerges naturally in the expression of the corrected entropy. A discussion about the inverse area term is also presented.  相似文献   

14.
Motivated by the fermions tunneling formalism of Kerner and Mann, we attempt to investigate quantum tunneling of Dirac particles from a five dimensions double Myers-Perry black hole, which describes the superposition of two Myers-Perry black holes, each with a single angular momentum parameter and both in the same plane. After introducing several appropriate Gamma matrixes for the covariant Dirac equation, we obtain the tunneling probability of Dirac particles from the double Myers-Perry black hole, which gives the expected emission temperature as the case of scalar particles that obtained by others.  相似文献   

15.
Quantum gravity has exciting peculiarities on the Planck scale.The effect of generalized uncertainty principle (GUP) to the entangled scalar/fermion particles’ tunneling from a Schwarzschild black hole immersed in an electromagnetic Universe is investigated by the help of semi-classical tunneling method. The quantum corrected Hawking temperature of this black hole with an external parameter “a” modifies the Hawking temperature for the entangled particles.  相似文献   

16.
杨树政  林恺 《物理学报》2010,59(8):5266-5270
运用超越半经典近似理论研究了Kerr-deSitter黑洞事件视界处的任意自旋粒子的隧穿辐射,并得到了修正的Hawking温度和粒子隧穿率.利用修正的Hawking温度和迹反常理论,进一步得到了此黑洞的修正熵,结果表明,超越半经典近似理论可适用于各种自旋粒子的隧穿辐射.  相似文献   

17.
One of the major open problems in theoretical physics is the lack of a consistent quantum gravity theory.Recent developments in our knowledge on thermodynamic phase transitions of black holes and their van der Waalslike behavior may provide an interesting quantum interpretation of classical gravity.Studying different methods of investigating phase transitions can extend our understanding of the nature of quantum gravity.In this paper,we present an alternative theoretical approach for finding thermodynamic phase transitions in the extended phase space.Unlike the standard methods based on the usual equation of state involving temperature,our approach uses a new quasiequation constructed from the slope of temperature versus entropy.This approach addresses some of the shortcomings of the other methods and provides a simple and powerful way of studying the critical behavior of a thermodynamical system.Among the applications of this approach,we emphasize the analytical demonstration of possible phase transition points and the identification of the non-physical range of horizon radii for black holes.  相似文献   

18.
In the context of gravity’s rainbow, Planck scale correction on Hawking radiation and black hole entropy in Parikh and Wilczk’s tunneling framework is studied. We calculate the tunneling probability of massless particles in the modified Schwarzschild black holes from gravity’s rainbow. In the tunneling process, when a particle gets across the horizon, the metric fluctuation must be taken into account, not only due to energy conservation but also to spacetime Planck scale effect. Our results show that the emission rate is related to changes of the black hole’s quantum corrected entropies before and after the emission. In the same time, for the modified black holes, a series of correction terms including a logarithmic term to Bekenstein–Hawking entropy are obtained. Correspondingly, the spectrum of Planck scale corrected emission is obtained and it deviates from the thermal spectrum. In addition, a specific form of modified dispersion relation is proposed and applied.  相似文献   

19.
The objective of this paper is to investigate the Fermions tunneling radiation of a new class of black holes in Einstein-Gauss-Bonnet (EGB) gravity and three-dimensional Lifshitz black hole in New Massive Gravity (NMG). As a result, the tunneling probability and Hawking temperature of the black holes are well recovered, which confirms that the Hawking temperature of emitted Dirac particles of the black holes are the same as in the case of scalar particles. The quantization of entropy from the black hole have also been discussed.  相似文献   

20.
Based on the generalized uncertainty principle (GUP), we investigate the correction of quantum gravity to Hawking radiation of black hole by utilizing the tunnelling method. The result tells us that the quantum gravity correction retards the evaporation of black hole. Using the corrected covariant Dirac equation in curved spacetime, we study the tunnelling process of fermions in Schwarzschild spacetime and obtain the corrected Hawking temperature. It turns out that the correction depends not only on the mass of black hole but also on the mass of emitted fermions. In our calculation, the quantum gravity correction slows down the increase of Hawking temperature during the radiation explicitly. This correction leads to the remnants of black hole and avoids the evaporation singularity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号