首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
The stable range-frequency interference structure(waveguide invariance) of the low frequency monostatic bottom reverberation in shallow water is derived theoretically in this paper by using ray-normal mode coherent reverberation model and separable bottom scattering model.And combined the concept of spectral subtraction,a reverberation forecasting and mitigating method based on the waveguide invariance is presented.According to the waveguide invariance,the reverberation intensity for a detecting range can be estimated from the reverberation returns scattered from some other range cells nearby the detecting range with frequency shift.Then the reverberation component for the detecting range in the echo can be canceled mostly by using the estimated reverberation intensity,so as to enhance the echo-to-reverberation ratio and improve the detection capability of the active sonar.Simulations in typical horizontal layered shallow water environment show the stability of waveguide invariance structure in the low frequency monostatic bottom reverberation and the efficiency of the reverberation forecasting and mitigating method based on the waveguide invariance.  相似文献   

2.
A reverberation model for estimating the average reverberation inten-sity in layered shallow water is presented.The reverberation intensity is calculated interms of ray theory for short range and normal mode theory for long range.Thecalculation accuracy has been improved by taking into account the effect of complexeigenvalues on the incident normal mode field.From the comparison between dif-ferent scattering models it has been shown that the separable bistatic-backscatteringmodel is acceptable.This makes it possible to calculate reverberation by using onlythe monostatic-backscattering coefficient and to save greatly the computing time.  相似文献   

3.
A stochastic inverse method is presented to estimate the seabottom scattering coeffcients on the base of shallow-water ray mode reverberation theory. The reverberation data measured in the Asian Sea International Acoustic Experiment (ASIAEX) in the East China Sea in 2001 are analysed. The seabottom scattering coefficients areestimated from the reverberation loss. The inverted results are then tested by comparing the experiment data with the predictions of the reverberation vertical correlation and the reverberation loss measured on the different sea states at the same site. The fact that the experimental data are in good agreement with the theoretical predictions indicates the validity of the estimates.  相似文献   

4.
A geometrical acoustic method based on image-source method and physical acoustic method was developed to calculate the echo of targets submerged in the shallow water waveguide.The incident rays and the scattering rays are reflected by two boundaries for many times,and then the back rays become countless.The total backscattering field is obtained through summing up the scattering field produced by each combination of incident rays and back rays.The echo of the 10m-radius pressure release sphere in Pekeris waveguide with the range is calculated by the geometrical acoustic method.Compared with the results calculated by the wave acoustic method in the available literature,it shows that both are in accordance on average value and descend trend.The following results indicate that the difference between Effective Target Strength(ETS) in shallow water and the Target Strength(TS) in free space for spheres and certain other rounded objects is small.However,the ETS of some targets such as cone-shaped is quite different from TS in free space,which can lead to large errors in estimating a target’s scattering property using traditional sonar equation.Compared with the method of wave acoustics,the geometrical acoustic method not only has the definite physical meaning but also can calculate the echo of complex objects in shallow water waveguide.  相似文献   

5.
Waveguide invariant in shallow water is an attractive topic in recent three decades. The interference phenomena of direct wave of radiated noise of underwater target and reflection wave from sea surface and sea bottom can be considered as a typical case of shallow water waveguide.The interference striation pattern of direct wave and its reflection is the effective and comprehensive figure for better understanding the essence of shallow water waveguide invariant.The theoretical analysis of interference phenomena generated by direct wave of radiated noise of underwater target and its reflection wave from sea surface and sea bottom is presented in this paper.It is shown that the interference wave resulted by sea surface reflection will produce striation pattern centered at high frequency band.But the interference of nulling frequency resulted by sea bottom reflection may be at low frequency or high frequency, it strongly depends on the acoustic behavior of sea bottom.The relationship between main parameters of interference striation pattern and target,receiver,and environment is derived.It is shown that the interference striation have the shape of hyperbolic curve.The equation set of the hyperbolic curve and its asymptotic line is presented.The at sea experiment carried out in South China sea shows some interesting results.A part of data processing results are illustrated in this paper.The results expressed in this paper show that the interference striation pattern can be used,in some conditions,as a potential means for target recognition.  相似文献   

6.
Combined the decomposition of time reversal operator and the time reversal reverberation nulling, a new time reversal processing approach for echo-to-reverberation ratio enhancement is proposed. In this method, a 2-dimensional signal subspace for the range of the target and two bottom focusing weight vectors for the ranges near the target are obtained by the decomposition of time reversal operator. From the signal subspace and focusing weight vectors, a constrained optimal excitation weight vector of source receiver array can be deduced to null the acoustic energy on the corresponding bottom and maximize the energy at the tar- get. This method remedies the shortages of conventional time reversal processing, time reversal reverberation nulling and time reversal selective focusing method. It focuses sound energy at the target and nulls the energy at the bottom near the target range simultaneously, therefore enhancing the echo-to-reverberation ratio without probe source and prior-knowledge of the relative scattering intensity of target and bottom. Numerical simulations in typical shallow water environments showed the effectiveness of the proposed method and its improved performance for echo-reverberation enhancement than conventional time reversal processing.  相似文献   

7.
张彦敏  王运华  赵朝方 《中国物理 B》2010,19(8):84103-084103
It is well known that the sea return echo contains contributions from at least two scattering mechanisms. In addition to the resonant Bragg scattering, the specular point scattering plays an important role as the incidence angle becomes smaller (≤20o). Here, in combination with the Kirchhoff integral equation of scattering field and the stationary phase approximation, analytical expressions for Doppler shift and spectral bandwidth of specular point scattering, which are insensitive to the polarization state, are derived theoretically. For comparison, the simulated results related to the two-scale method (TSM) and the method of moment (MOM) are also presented. It is found that the Doppler shift and the spectral bandwidth given by TSM are insufficient at small incidence angles. However, a comparison between the analytical results and the numerical simulations by MOM in the backscatter configuration shows that our proposed formulas are valid for the specular point scattering case. In this work, the dependences of the predicted results on incidence angle, radar frequency, and wind speed are also discussed. The obtained conclusions seem promising for a better understanding of the Doppler spectra of the specular point scattering fields from time-varying sea surfaces.  相似文献   

8.
李娟  郭立新  曾浩  韩旭彪 《中国物理 B》2009,18(7):2757-2763
Composite electromagnetic scattering from a two-dimensional (2D) ship-like target on a one-dimensional sea surface is investigated by using the finite-difference time-domain (FDTD) method. A uniaxial perfectly matched layer is adopted for truncation of FDTD lattices. The FDTD updated equations can be used for the total computation domain by choosing the uniaxial parameters properly. To validate the proposed numerical technique, a 2D infinitely long cylinder over the sea surface is taken into account first. The variation of angular distribution of the scattering changing with incident angle is calculated. The results show good agreement with the conventional moment method. Finally, the influence of the incident angle, the polarization, and the size of the ship-like target on the composite scattering coefficient is discussed in detail.  相似文献   

9.
A surface-ship wake model is proposed for calculating the scattering of ship wake from a nonlinear sea surface at a high sea state. Ship waves are simulated based on the Kelvin wave model by the point-source method.A Creamer Ⅱ sea surface based on the Elfouhaily sea spectrum is generated, and breaking waves and foam layer effects are taken into account for the background sea scattering at slight, moderate and high wind speeds.Turbulent bubbles scattering from the ship, which is different from wind-driven bubble breaking, is taken into account with a different concentration distribution using a polynomial fitting function combined with measured data. The surface-ship wake scattering is presented for different wind speeds. Numerical simulations show that ship wake scattering results will be higher when wake bubbles are taken into account. The ship beam is a key parameter that influences the width of the turbulent wake, and results in different scattering characteristics on the scattering image. The wind-induced surface in the presence of breaking waves and whitecaps results in scattering enhancement. This will cause the ship wake signal to be submerged in the back-ground of sea noise, leading to false alarms.  相似文献   

10.
To quickly obtain the sound speed profile (SSP) in shallow water by inversion methods, an inversion scheme for SSP in shallow water using matched-beam processing (MBI) is developed. The cost function of MBI is based on matched-beam concept. It is verified experimentally that MBI is feasible and superior in comparison to conventional matched-field inversion (MFI) by using the East China Sea Experiment data. The SSP inverted by MBI using the wide-band explosion signals is in good agreement with the results measured based on conductivity, temperature and depth (CTD) in the experiment. And the root of mean square error of the inverted SSP is less than 2 m/s. Research results have shown that MBI is robust with respect to the sediment parameters mismatch. And SSP in shallow water can be more quickly obtained by MBI than by MFI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号