首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Wheat Dried distiller’s grain (DDG), a coproduct from the ethanol production process, is rich in potentially health-promoting phenolic compounds. In the extraction of phenolic compounds from DDG, the DDG cell wall is an important barrier for mass transfer from the inside to the outside of the cell. The effect of high-power ultrasound pretreatment on destruction of DDG cell walls and extraction yield and rate was investigated. Direct sonication by an ultrasound probe horn at 24 kHz was applied and factors such as ultrasound power and treatment time were investigated. The method of nitrogen (N2) adsorption at 77 K was used as a means to determine and compare the changes in physical properties (specific surface area, pore volume and pore size) of the treated samples at different levels of ultrasound power and treatment time. Increasing specific surface area, pore volume and pore size caused by ultrasonic treatment implied development of new or larger pores and damaged cell walls. Also, it was observed that the ultrasound pretreatment of DDG particles increased the extraction yield and rate of phenolic compounds from DDG by 14.29%. Among tested ultrasound conditions, 100% ultrasound power for 30 s was evaluated as the best pretreatment condition.  相似文献   

2.
Some species of bacteria produce colonies and spores which agglomerate in spherical clusters (Bacillus subtilis) and this serves as a protection for the organisms inside against biocidal attack. Flocs of fine particles e.g. clay can entrap bacteria which can also protect them against the biocides. It is because of problems such as these that alternative methods of disinfecting water are under active investigation. One such method is the use of power ultrasound, either alone or in combination with other methods. Ultrasound is able to inactivate bacteria and deagglomerate bacterial clusters or flocs through a number of physical, mechanical and chemical effects arising from acoustic cavitation. The aim of this study was to investigate the effect of power ultrasound at different powers and frequencies on Bacillus subtilis. Viable plate count techniques were used as a measure of microbial activity. Results showed a significant increase in percent kill for Bacillus species with increasing duration of exposure and intensity of ultrasound in the low-kilohertz range (20 and 38 kHz). Results obtained at two higher frequencies (512 and 850 kHz) indicated a significant increase in bacteria count suggesting declumping. In assessing the bacterial kill with time under different sonication regimes three types of behaviour were characterized:
• High power ultrasound (lower frequencies) in low volumes of bacterial suspension results in a continuous reduction in bacterial cell numbers i.e. the kill rate predominates.
• High power ultrasound (lower frequencies) in larger volumes results in an initial rise in cell numbers suggesting declumping of the bacteria but this initial rise then falls as the declumping finishes and the kill rate becomes more important.
• Low intensity ultrasound (higher frequencies) gives an initial rise in cell numbers as a result of declumping. The kill rate is low and so there is no significant subsequent decrease in bacterial cell numbers.
  相似文献   

3.
This study investigated the use of ultrasound-assisted extraction (UAE) to improve the extraction efficiency of the classical solvent extraction techniques such as maceration and soxhlet extraction to extract anti-oxidant activity compounds, anthraquinones, from the root of Morinda citrifolia. The effects of different extraction conditions were determined, i.e., temperature of (25, 45, 60 °C), ultrasonic power, solvent types, and compositions of ethanol in ethanol–water mixtures. The results show that the yield increases with increasing extraction times and extraction temperatures. The percent recovery of anthraquinones using ultrasound was found to be highly dependent on the type of solvents (acetone > acetonitrile > methanol > ethanol). Furthermore, the use of ethanol–water solution as extraction solvent increased the yield of anthraquinones due to the relative polarity, the swelling effect of plant tissue matrix by water, and increased sound absorption. To achieve the same recovery as that achieved by UAE, soxhlet extraction and maceration required much longer time.  相似文献   

4.
Ultrasound-assisted extraction (UAE) of commercially important natural product camptothecin (CPT) from Nothapodytes nimmoniana plant has been investigated. The influences of process factors such as electric acoustic intensity, solid to liquid ratio, duty cycle, temperature and particle size on the maximum extraction yield and kinetic mechanisms of the entire extraction process have been investigated. The kinetics results showed that increasing the intensity, duty cycle, solid to liquid ratio and decreasing the particle size lead to substantial increase in extraction yields compared to classical stirring extraction. Different kinetic models were applied to fit the experimental data. The second order rate model appears to be the best. The extraction rate constant, initial extraction rate and the equilibrium concentration for all experimental conditions have been calculated. SEM analysis of spent plant material clearly showed hollow openings on cell structure, which could be directly correlated to explosive disruption by the action of ultrasound waves. Overall 1.7-fold increase in extraction yields of CPT (0.32% w/w) and decrease in time from 6 h to 18 min was observed over the stirring method.  相似文献   

5.
Wang XB  Liu QH  Wang P  Tang W  Hao Q 《Ultrasonics》2008,48(2):135-140
The present study was initiated to investigate the potential biological mechanism of cell killing effect on isolate sarcoma 180 (S180) cells induced by ultrasound activating protoporphyrin IX (PPIX). S180 cells were exposed to ultrasound for 30 s duration, at a frequency of 2.2 MHz and an acoustic power of 3 W/cm2 in the presence of 120 μM PPIX. The viability of cells was evaluated using trypan blue staining. The generation of oxygen free radicals in cell suspensions was detected immediately after treatment using a reactive oxygen detection kit. A copper reagent colorimetry method was used to measure the level of FFAs released into cell suspensions by the process of cell damage induced by ultrasound and PPIX treatment. Oxidative stress was assessed by measuring the activities of key antioxidant enzymes (i.e., SOD, CAT, GSH-PX) in S180 tumor cells. Treatment with ultrasound and PPIX together increased the cell damage rate to 50.91%, while treatment with ultrasound alone gave a cell damage rate to 24.24%, and PPIX alone kept this rate unchanged. Colorimetry and enzymatic chemical methods showed that the level of FFAs in cell suspension increased significantly after the treatment, while the activity of all the above enzymes decreased in tumor cells at different levels, and were associated with the generation of oxygen free radicals in cell suspension after treatment. The results indicate that oxygen free radicals may play an important role in improving the membrane lipid peroxidation, degrading membrane phospholipids to release FFAs, and decreasing the activities of the key antioxidant enzymes in cells. This biological mechanism might be involved in mediating the effects on S180 cells and resulting in the cell damage seen with SDT.  相似文献   

6.
Three drying methods, including far infrared drying, infrared convection drying, and ultrasonic pretreatment assisted far infrared drying, were adopted in the drying of ginger slices. The effects of main parameters (ultrasonic pretreatment power and time, far infrared temperature and power, sample thickness, infrared convection temperature) on the drying kinetics, energy consumption, and color change were investigated and discussed in detail. The results showed that the drying process of ginger slices was controlled by falling rate period. For far infrared drying, the drying rate increased with the increase of infrared temperature and decrease of sample thickness, while the infrared power had no obvious effect on the drying process. The infrared convection drying showed the fastest drying rate and the smallest color change, however, the energy consumption was the highest. For ultrasonic pretreatment assisted far infrared drying, an appropriate ultrasonic pretreatment time and power would promote the far infrared drying process and the energy consumption was only slightly increased. However, the color change was relatively large. The ultrasound technology showed its greatest potential to enhance the drying rate at the early stage of drying and increasing ultrasonic power was more effective than prolonging the pretreatment time in promoting far infrared drying.  相似文献   

7.
This study aims to investigate effects of ultrasound assisted extraction on the abalone viscera protein extraction rate and iron-chelating activity of peptides. The optimal conditions for ultrasound assisted extraction by response surface methodology was at sodium hydroxide concentration 14 g/kg, ultrasonic power 428 W and extraction time 52 min. Under the optimal conditions, protein extraction rate was 64.89%, compared with alkaline extraction of 55.67%. The iron-chelating activity of peptides affected by ultrasound technology was further evaluated by iron-chelating rate, FTIR spectroscopy and LC-HRMS/MS. Alcalase was the suitable enzyme for the preparation of iron-chelating peptides from two abalone viscera proteins, showing no significant difference between their iron-chelating rate of 16.24% (ultrasound assisted extraction) and 16.60% (alkaline extraction). Iron binding sites from the two hydrolysates include amino and carboxylate terminal groups and peptide bond of the peptide backbone as well as amino, imine and carboxylate from side chain groups. Moreover, 24 iron-chelating peptides were identified from hydrolysate (alcalase, ultrasound assisted extraction), which were different from the 27 iron-chelating peptides from hydrolysate (alcalase, alkaline extraction). This study suggests the application of ultrasound technology in the generation of abalone viscera-derived iron-chelating peptides which have the ability to combat iron deficiency.  相似文献   

8.
Kinetics of chitosan fragmentation by ultrasonic irradiation at frequency of 20 kHz, and the effects of experimental variables (power of ultrasound, chitosan concentration and solution temperature) on fragmentation were investigated. The kinetics studies were followed by measuring solution viscosity of the original and its fragments, and determining average number of chain scission of the fragments. The effects of ultrasonic power, chitosan concentration and solution temperature on fragmentation process were followed by viscometry and size exclusion chromatography. The chemical structure of the original chitosan and its fragments were examined by (1)H NMR spectroscopy and elemental analysis. The experimental results showed that the rate of fragmentation increased with an increase in power of ultrasound. Chain scission increased with an increase in power of ultrasound; and solution temperature, but a decrease in chitosan concentration. The chemical structure and polydispersity of the original and the fragments were nearly identical. A model based on experimental data to describe the relationship between chain scission and experimental variables (power of ultrasound; irradiation time; reduced concentration, c[eta]; and solution temperature) was proposed. It was concluded that ultrasonic irradiation is a suitable method to perform partial depolymerization and to obtain moderate macromolecules from large ones.  相似文献   

9.
There is a growing demand for eco-friendly/non-toxic colorants, specifically for health sensitive applications such as coloration of food and dyeing of child textile/leather garments. Recently, dyes derived from natural sources for these applications have emerged as an important alternative to potentially harmful synthetic dyes and pose need for suitable effective extraction methodologies. The present paper focus on the influence of process parameters for ultrasound assisted leaching of coloring matter from plant materials. In the present work, extraction of natural dye from beetroot using ultrasound has been studied and compared with static/magnetic stirring as a control process at 45 °C. The influence of process parameters on the extraction efficiency such as ultrasonic output power, time, pulse mode, effect of solvent system and amount of beetroot has been studied. The use of ultrasound is found to have significant improvement in the extraction efficiency of colorant obtained from beetroot. Based on the experiments it has been found that a mixture of 1:1 ethanol–water with 80 W ultrasonic power for 3 h contact time provided better yield and extraction efficiency. Pulse mode operation may be useful in reducing electrical energy consumption in the extraction process. The effect of the amount of beetroot used in relation to extraction efficiency has also been studied. Two-stage extraction has been studied and found to be beneficial for improving the yield for higher amounts of beetroot. Significant 8% enhancement in % yield of colorant has been achieved with ultrasound, 80 W as compared to MS process both using 1:1 ethanol–water. The coloring ability of extracted beet dye has been tested on substrates such as leather and paper and found to be suitable for dyeing. Ultrasound is also found to be beneficial in natural dyeing of leather with improved rate of exhaustion. Both the dyed substrates have better color values for ultrasonic beet extract as inferred from reflectance measurement. Therefore, the present study clearly offers efficient extraction methodology from natural dye resources such as beetroot with ultrasound even dispensing with external heating. Thereby, also making eco-friendly non-toxic dyeing of fibrous substances a potential viable option.  相似文献   

10.
Cavitation bubbles have been recognized as being essential to many applications of ultrasound. Temporal evolution and spatial distribution of cavitation bubble clouds induced by a focused ultrasound transducer of 1.2 MHz center frequency are investigated by high-speed photography. It is revealed that at a total acoustic power of 72 W the cavitation bubble cloud first emerges in the focal region where cavitation bubbles are observed to generate, grow, merge and collapse during the initial 600 μs. The bubble cloud then grows upward to the post-focal region, and finally becomes visible in the pre-focal region. The structure of the final bubble cloud is characterized by regional distribution of cavitation bubbles in the ultrasound field. The cavitation bubble cloud structure remains stable when the acoustic power is increased from 25 W to 107 W, but it changes to a more violent form when the acoustic power is further increased to 175 W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号