首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
Turbulent premixed flames often experience thermoacoustic instabilities when the combustion heat release rate is in phase with acoustic pressure fluctuations. Linear methods often assume a priori that oscillations are periodic and occur at a dominant frequency with a fixed amplitude. Such assumptions are not made when using nonlinear analysis. When an oscillation is fully saturated, nonlinear analysis can serve as a useful avenue to reveal flame behaviour far more elaborate than period-one limit cycles, including quasi-periodicity and chaos in hydrodynamically or thermoacoustically self-excited system. In this paper, the behaviour of a bluff-body stabilised turbulent premixed propane/air flame in a model jet-engine afterburner configuration is investigated using computational fluid dynamics. For the frequencies of interest in this investigation, an unsteady Reynolds-averaged Navier–Stokes approach is found to be appropriate. Combustion is represented using a modified laminar flamelet approach with an algebraic closure for the flame surface density. The results are validated by comparison with existing experimental data and with large eddy simulation, and the observed self-excited oscillations in pressure and heat release are studied using methods derived from dynamical systems theory. A systematic analysis is carried out by increasing the equivalence ratio of the reactant stream supplied to the premixed flame. A strong variation in the global flame structure is observed. The flame exhibits a self-excited hydrodynamic oscillation at low equivalence ratios, becomes steady as the equivalence ratio is increased to intermediate values, and again exhibits a self-excited thermoacoustic oscillation at higher equivalence ratios. Rich nonlinear behaviour is observed and the investigation demonstrates that turbulent premixed flames can exhibit complex dynamical behaviour including quasiperiodicity, limit cycles and period-two limit cycles due to the interactions of various physical mechanisms. This has implications in selecting the operating conditions for such flames and for devising proper control strategies for the avoidance of thermoacoustic instability.  相似文献   

2.
The continuous FitzHugh-Nagumo (FHN for short) model is transformed into modified van der Pol oscillator with asymmetry under external and two-frequency parametric excitations. At the first, the dependence of the solutions on a combined external and two-frequency parametric stimulus forcing is investigated. By using the multiple scale method, ranges of applied current and/or parametric forcing in which nonlinear oscillations are observed are described. Second, when the multiple scale method cannot be used, we numerically prove that in the modified van der Pol oscillator with asymmetry under external and two-frequency parametric excitations, chaos and periodic solution depending on the combination between different frequencies of the model should appear. We also show that the amplitude of the oscillations can be reduced or increased. To do this, we perform the study of the FHN model by choosing a range of parameters exhibiting Hopf bifurcation and two qualitative different regimes in phase portrait.  相似文献   

3.
Combustion instabilities in annular combustors are of great interest because of their industrial relevance. Azimuthal acoustic modes, which involve transverse acoustic forcing to flames, have become a key process related to annular combustor instabilities. Transverse mean flow may be a factor that affects azimuthal oscillations. This paper provides an analytical model for a transversely forced two-dimensional Bunsen flame under transverse mean flow. The model is established using a low-amplitude perturbation assumption applied to a G-equation formulation. Forced flame displacement and flame transfer functions (FTFs) are calculated. The results are verified based on numerical solutions of the G-equation. Effects of frequency, transverse mean flow velocity and vertical mean flow velocity on the FTFs are discussed. The symmetric flame without transverse mean flow has a vanishing response to transverse acoustic forcing, while asymmetric flames, which are formed with transverse mean flow, have a bandpass response to transverse forcing. The response at very low and high forcing frequencies is small, with higher transfer function gains only in a certain frequency range. This bandpass response, which is inherently linked to the asymmetry of the flame, is an important factor to account for when considering the flame dynamics related to transverse acoustic effects.  相似文献   

4.
The frequency response of three lean methane/air flames submitted to flowrate perturbations is analyzed for flames featuring the same equivalence ratio and thermal power, but a different stabilization mechanism. The first flame is stabilized by a central bluff body without swirl, the second one by the same bluff body with the addition of swirl and the last one only by swirl without central insert. In the two last cases, the swirl level is roughly the same. These three flames feature different shapes and heat release distributions, but their Flame Transfer Function (FTF) feature about the same phase lag at low frequencies. The gain of the FTF also shows the same behavior for the flame stabilized by the central insert without swirl and the one fully aerodynamically stabilized by swirl. Shedding of vortical structures from the injector nozzle that grow and rollup the flame tip controls the FTF of these flames. The flame stabilized by the swirler-plus-bluff-body system features a peculiar response with a large drop of the FTF gain around a frequency at which large swirl number oscillations are observed. Velocity measurements in cold flow conditions reveal a strong reduction of the size of the vortical structures shed from the injector lip at this forcing condition. The flame stabilized aerodynamically only by swirl and the one stabilized by the bluff body without swirl do not exhibit any FTF gain drop at low frequencies. In the former case, large swirl number oscillations are still identified, but large vortical structures shed from the nozzle also persist at the same forcing frequency in the cold flow response. These different flame responses are found to be intimately related to the dynamics of the internal recirculation region, which response strongly differs depending upon the injector used to stabilize the flame.  相似文献   

5.
A numerical investigation of the interaction between a spray flame and an acoustic forcing of the velocity field is presented in this paper. In combustion systems, a thermoacoustic instability is the result of a process of coupling between oscillations in heat released and acoustic waves. When liquid fuels are used, the atomisation and the evaporation process also undergo the effects of such instabilities, and the computational fluid dynamics of these complex phenomena becomes a challenging task. In this paper, an acoustic perturbation is applied to the mass flow of the gas phase at the inlet and its effect on the evaporating fuel spray and on the flame front is investigated with unsteady Reynolds averaged Navier-Stokes numerical simulations. Two flames are simulated: a partially premixed ethanol/air spray flame and a premixed pre-vaporised ethanol/air flame, with and without acoustic forcing. The frequencies used to perturb the flames are 200 and 2500 Hz, which are representative for two different regimes. Those regimes are classified based on the Strouhal number St = (D/U)ff: at 200 Hz, St = 0.07, and at 2500 Hz, St = 0.8. The exposure of the flame to a 200 Hz signal results in a stretching of the flame which causes gas field fluctuations, a delay of the evaporation and an increase of the reaction rate. The coupling between the flame and the flow excitation is such that the flame breaks up periodically. At 2500 Hz, the evaporation rate increases but the response of the gas field is weak and the flame is more stable. The presence of droplets does not play a crucial role at 2500 Hz, as shown by a comparison of the discrete flame function in the case of spray and pre-vaporised flame. At low Strouhal number, the forced response of the pre-vaporised flame is much higher compared to that of the spray flame.  相似文献   

6.
陈立群 《中国物理》2002,11(9):900-904
An open plus nonlinear closed loop control law is presented for chaotic oscillations described by a set of nonautonomous second-order ordinary differential equations.It is proven that the basins of entrainment are global when the right-hand sides of the equations are given by arbitrary polynomical functions.The forece Duffing oscillator and the forced van der Pol oscillator are treated as numerical examples to demonstrate the applications of the method.  相似文献   

7.
Mode locking phenomena in acoustics and in laser physics are discussed and are shown to share a feature of the forced oscillator: Oscillation takes place at the forcing frequency (or frequencies). The phenomena differ from simple forced oscillations in that they involve sustained oscillators (e.g., clocks, lasers) whose sustaining sources compete against the forcing signals in the choice of oscillation frequency. The locking phenomena are compared to second-order phase transitions in ferromagnetism and superconductivity where corresponding competition occurs between disordering thermal fluctuations and ordering correlations which reduce system energy.  相似文献   

8.
We demonstrate the resonant-like behaviour of the cardiopulmonary system in healthy people occurring at the natural low frequency oscillations of 0.1 Hz, which are often visible in the continuous pressure waveform. These oscillations represent the spontaneous oscillatory activity of the vasomotor centre and are sometimes called the Mayer waves. These 10-second rhythms probably couple with forced breathing at the same frequency and cause the observed cardiopulmonary resonance phenomenon. We develop a new method to study this phenomenon, namely the averaged Lomb-Scargle periodogram method, which is shown to be very effective in enhancing common frequencies in a group of different time series and suppressing those which vary between datasets. Using this method we show that in cardiopulmonary resonance the cardiopulmonary system behaves in a very similar way to a simple mechanical or electrical oscillator, i.e. becomes highly regular and its averaged spectrum exhibits a clear dominant peak and harmonics. If the forcing frequency is higher than 0.1 Hz, the total power and the share of power in the dominant peak and harmonics are lower and the prominence of the dominant peak and its harmonics greatly diminishes. It is shown that the power contributions from different forcing frequencies follow the resonance curve.  相似文献   

9.
The possibility of using an additional sequentially connected friction spring element in order to reduce vibration amplitudes both for the self-excited oscillations and for the forced vibrations is discussed in the paper. The analysis is based on the averaging technique for systems with “slave variables” and demonstrates two main effects: damping during slipping in the additional element and fast switching between different natural frequencies due to alternating sticking/slipping phases. Analytic predictions for the oscillations’ amplitudes are obtained as steady state solutions of the equations governing slow motions of the system. The obtained analytic results enable optimal choice of friction in order to achieve maximal damping effect in case of the forced vibrations. The reasonable choice of the friction by the self-excited vibrations is a compromise between the acceptable amplitude and the robustness of the corresponding limit cycle. The asymptotic results are confirmed by numeric simulations.  相似文献   

10.
In this paper we demonstrate direct suppression of self-excited thermoacoustic instabilities over a range of operating conditions using targeted convective-acoustic interference. Premixed hydrogen enriched methane-air flames were confined in a cylindrical pipe resulting in self-excited instabilities that corresponded to the quarter wave mode of the pipe. To suppress the instability, the phenomenon of lock-in (synchronisation) between the acoustic mode and vortex shedding from a set of cylinders placed upstream was used to produce destructive interference and suppress the self-excited modes. This was done by varying the location of the cylinders to control the convective time-delay between the convective and acoustic modes so that their combined effect on the flame response was tuned to suppress the global fluctuation of the heat release rate. This leads to a reduction in the limit-cycle amplitude and stable operation without a significant change to the flame structure. Measurements were taken over a wide range of equivalence ratios to demonstrate that the method is capable of stabilising the system for all conditions. Using a methodology which relies on time-delays related to hydrodynamic instability, rather than flame-related parameters, enables its application to fuel-flexible systems, often designed to operate within a wide range of power outputs.  相似文献   

11.
Several important applications use nonlinear feedback methods for synthetically inducing self-excited oscillations in mechanical systems. The van der Pol and saturation function type feedback methods are widely used. The effects of time-delay on the self-excited oscillation of single and two degrees-of-freedom systems under nonlinear feedback have been studied in this paper. It is shown that a single degree-of-freedom oscillator with the van der Pol type nonlinear feedback can produce unbounded response in presence of time-delay. In general, an uncontrolled time-delay in the feedback changes the state of oscillations in an uncertain manner. Therefore, a bounded saturation type feedback with controllable time-delay is proposed for inducing self-excited oscillations. The feedback signal is essentially an infinite weighted sum of a nonlinear function of the state variables of the system measured at equal intervals in the past. More recent is the measurement, higher is the weight. Thus, the feedback signal uses a large amount of information about the past history of the dynamics. Such a control signal can be realized in practice by a recursive means. The control law allows three parameters to be varied namely, the time-delay, feedback and recursive gains. Multiple time scale analysis is used to plot amplitude vs. time-delay curves. Time-delay can be controlled to vary the amplitude of oscillation as well as to switch the oscillation from one mode to the other in a two degrees-of-freedom system. It is shown that a higher recursive gain can exercise a better and a more robust control on the amplitude of oscillation of the system. Analytical results are compared with the results of numerical simulations.  相似文献   

12.
The instability attenuation mechanism of fuel staging was investigated in a CH4/H2 fueled dual-nozzle gas turbine combustor. Fuel staging was implemented using an asymmetry in fuel composition between the two nozzles. The fuel composition of the upper nozzle was varied while keeping that of the lower nozzle constant. Under these conditions, the self-excited and forced responses of fuel-staged flames were analyzed using OH* chemiluminescence imaging, OH planar laser-induced fluorescence, and particle image velocimetry. In the self-excited measurements, although strong combustion instability was exhibited in the symmetric condition, it weakened gradually with increasing asymmetry in fuel composition. The symmetric flame exhibited significant fluctuations in the heat release rate around the flame tip, which acted as the primary cause of driving combustion instability. However, in asymmetric flames, the H2 addition induced phase leads in heat release rate fluctuations at the upper region, which damped combustion instability. Thus, our observations revealed a high correlation between the phase leads and the attenuation of combustion instability. Analyses of the forced responses showed that the heat release rate fluctuations were induced by interactions between the flame and the shedding vortex released from the nozzle tip into the downstream. Although these characteristics of shedding vortices did not depend on the H2 addition, the change in the axial position of the flame caused by the H2 addition induced the relocation of the site, at which the flame interacted with the vortex. Subsequently, it induced phase leads in the heat release rate fluctuations. The phase difference of heat release rate fluctuations between the two flames due to this phase leads enlarged progressively with increasing asymmetry in fuel composition, leading to the attenuation of combustion instability in asymmetric conditions.  相似文献   

13.
This paper examines nonlinear thermoacoustic oscillations of a ducted Burke-Schumann diffusion flame. The nonlinear dynamics of the thermoacoustic system are studied using two distinct approaches. In the first approach, a continuation analysis is performed to find limit cycle amplitudes over a range of operating conditions. The strength of this approach is that one can characterize the coupled system’s nonlinear behaviour over a large parameter space with relative ease. It is not able to give physical insight into that behaviour, however. The second approach uses a Flame Describing Function (FDF) to characterize the flame’s response to harmonic velocity fluctuations over a range of forcing frequencies and forcing amplitudes, from which limit cycle amplitudes can be found. A strength of the FDF approach is that it reveals the physical mechanisms responsible for the behaviour observed. However, the calculation of the FDF is time consuming, and it must be recalculated if the flame’s operating conditions change. With the strengths and shortcomings of the two approaches in mind, this paper advocates combining the two to provide the dynamics over a large parameter space and, furthermore, physical insight into that behaviour at judiciously-chosen points in the parameter space. Further physical insight concerning the flame’s near-linear response at all forcing amplitudes is given by studying the forced flame in the time domain. It is shown that, for this flame model, the limit cycles arise because of the flame’s nonlinear behaviour when it is close to the inlet.  相似文献   

14.
We examine examples of weakly nonlinear systems whose steady states undergo a bifurcation with increasing forcing, such that a forced subsystem abruptly ceases to absorb additional energy, instead diverting it into an initially quiescent, unforced subsystem. We derive and numerically verify analytical predictions for the existence and behavior of such saturated states for a class of oscillator pairs. We also examine related phenomena, including zero-frequency response to periodic forcing, Hopf bifurcations to quasiperiodicity, and bifurcations to periodic behavior with multiple frequencies.  相似文献   

15.
It is shown that under conditions of a weak external impressed force the oscillation in the locking range of a self-excited oscillator is compounded of self-oscillations and forced oscillations with the same frequency but different phases, the self- and forced oscillations acting one upon the other.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 32–36, March, 1974.  相似文献   

16.
Uniform oscillations in spatially extended systems resonate with temporal periodic forcing within the Arnold tongues of single forced oscillators. The Arnold tongues are wedge-like domains in the parameter space spanned by the forcing amplitude and frequency, within which the oscillator's frequency is locked to a fraction of the forcing frequency. Spatial patterning can modify these domains. We describe here two pattern formation mechanisms affecting frequency locking at half the forcing frequency. The mechanisms are associated with phase-front instabilities and a Turing-like instability of the rest state. Our studies combine experiments on the ruthenium catalyzed light-sensitive Belousov-Zhabotinsky reaction forced by periodic illumination, and numerical and analytical studies of two model systems, the FitzHugh-Nagumo model and the complex Ginzburg-Landau equation, with additional terms describing periodic forcing.  相似文献   

17.
Dynamic features of a freely propagating turbulent premixed flame under global stretch rate oscillations were investigated by utilizing a jet-type low-swirl burner equipped with a high-speed valve on the swirl jet line. The bulk flow velocity, equivalence ratio and the nominal mean swirl number were 5 m/s, 0.80 and 1.23, respectively. Seven velocity forcing amplitudes, from 0.09 to 0.55, were examined with a single forcing frequency of 50 Hz. Three kinds of optical measurements, OH-PLIF, OH* chemiluminescence and PIV, were conducted. All the data were measured or post-processed in a phase-locked manner to obtain phase-resolved information. The global transverse stretch rate showed in-phase oscillations centering around 60 (1/s). The oscillation amplitude of the stretch rate grew with the increment of the forcing amplitude. The turbulent flame structure in the core flow region varied largely in axial direction in response to the flowfield oscillations. The flame brush thickness and the flame surface area oscillated with a phase shift to the stretch rate oscillations. These two properties showed a maximum and minimum values in the increasing and decreasing stretch periods, respectively, for all the forcing amplitudes. Despite large variations in flame brush thickness at different phase angles, the normalized profiles collapse onto a consistent curve. This suggests that the self-similarity sustains in this dynamic flame. The global OH* fluctuation response (i.e. response of global heat-release rate fluctuation) showed a linear dependency to the forcing velocity oscillation amplitudes. The flame surface area fluctuation response showed a linear tendency as well with a slope similar to that of the global OH* fluctuation. This indicated that the flame surface area variations play a critical role in the global flame response.  相似文献   

18.
The periodically forced spatially extended Brusselator is investigated in the chaotic regime. We explore resonant or non-resonant patterns generated under various forcing frequencies and forcing amplitudes. Resonant spatially uniform oscillation and irregular structures are found. Furthermore two types of regular spatial patterns are generated under appropriate parameters. Our results of numerical simulations demonstrate that periodic force can give rise to resonant patterns in forced systems of spatiotemporal chaos similar to the situation of forced systems of regular oscillations.  相似文献   

19.
The present experimental investigation demonstrates important trends and offers physical insights into self-excited combustion instabilities in mesoscale multinozzle flames composed of sixty small injectors. Here we focus on the response of a prototypical micromixer-type injector assembly, fabricated using an additive manufacturing technique, in comparison with the behavior of conventional large-scale swirl-stabilized flames. Our results highlight that the development of self-excited instabilities in unconventional mesoscale flames is fundamentally different from that in large-scale swirl flames, in terms of the onset of instabilities, nonlinear modal dynamics, and amplitude/frequency of limit cycle oscillations under the same operating conditions. These differences are attributable to the alteration in local flow/flame structures and the resulting flame-to-flame/flame-wall interaction mechanisms. An integrated analysis of large datasets reveals that the two interacting swirl-stabilized flames tend to couple strongly with a low-frequency L1 mode at about 220 Hz, whereas the sixty-injector small-scale flames are capable of triggering multiple higher-frequency instabilities at ~ 310, ~ 470, and ~ 600 Hz. That is, the use of the micromixer-type injector assembly in a lean-premixed system causes the occurrence of combustion instabilities to shift toward a higher equivalence ratio. However, due to the absence of a large recirculation zone near the primary reaction region, the combustion system equipped with the small-scale multinozzle injectors was found to suffer from lean blowoff phenomena at low equivalence ratio.  相似文献   

20.
The response of a dynamical flame model to imposed acoustic accelerations is studied analytically and numerically. Through linear stability analyses, two analytical approximations for the primary and the parametric stability boundaries are found. The approximation for the primary instability boundary is accurate for any periodic accelerations, in the limit of large acoustic frequencies. The critical acoustic amplitude u a for Landau–Darrieus instability suppression is identified and found to depend only on the density contrast and the shape of the periodic acoustic stimuli. The proposed model evolution equation is next integrated numerically with various imposed acoustic accelerations; the primary and parametric flame responses are identified. It is shown analytically and numerically that in the presence of a fully developed, yet weakened by acoustics, Landau–Darrieus (or primary) instability the wrinkle amplitude and the mean flame speed oscillate at the same frequency as the acoustic stimuli; the threshold for suppression of primary instability by acoustic forcing is determined exactly. Increasing the acoustic amplitude allows the flame to respond parametrically to the acoustics. This response is characterised by troughs and crests interchanging their roles while the mean flame speed again oscillates with the same frequency as the acoustic stimuli and at twice that of wrinkle amplitude oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号