首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
液化石油气蒸汽爆炸的模拟实验研究   总被引:9,自引:0,他引:9  
液化石油气蒸汽爆炸是对其安全储运构成很大威胁的一种观象。本文设计了一个实验装置用以检测液化石油气容器在突然出现裂口后压力急剧变化的过程。该装置可模拟液化石油气容器发生蒸汽爆炸的现象。实验结果表明,液化石油气的突然泄放过程中确实可能出现压力的急剧反弹,有时甚至超过初始压力,很可能导致剧烈的蒸汽爆炸。  相似文献   

2.
热分层对蒸汽爆炸过程影响的实验研究   总被引:5,自引:0,他引:5  
本文针对液化石油气受热侵袭时出现的热分层及其对蒸汽爆炸的影响进行了模拟实验研究。在不同充装度(85%和45%)下的热响应实验证明,当储罐受到外部热源的侵袭时,在气液相区均存在着热分层。通过两种不同的加热形式,分别得到了分层度ξ>1和ξ=1的液化石油气。在此基础上进行了模拟蒸汽爆炸的泄压实验。通过实验数据的比较发现,由于分层区的存在,减小了液化石油气能量和压力泄放过程中的压力反弹,减小了蒸汽爆炸发生的可能。  相似文献   

3.
徐克仁  殷立平 《物理》1990,19(10):614-615
本文报告了经磁场处理后的液化石油气燃烧热效率的改变情况.液化石油气经恒磁场处理后,再送入燃烧器(炉具)燃烧,可提高燃烧的热效率,从而达到节气的目的.实验结果表明,经适当的磁场处理后的燃烧热效率比没经磁场处理时提高了3-5%,节气率为4-7%.  相似文献   

4.
丙烷是液化石油气的主要成分之一,爆炸下限的丙烷-空气浓度分布及其可燃性是液化石油气安全技术措施的基础。采用Fluent软件,建立三维数学模型,在长径比分别为1、3、5和7的容器内,模拟了爆炸下限的丙烷-空气混合过程和燃烧过程,分析了爆炸下限的丙烷-空气不均匀分布时对混合气体燃烧的影响。实验数据验证了该数值模型的合理性。在重力作用下丙烷-空气浓度分布不均匀,长径比增大,丙烷浓度梯度增大。浓度分布不均匀导致不同的点火位置对爆炸下限丙烷-空气燃烧有影响。容器长径比影响火焰传播,随着长径比增大,非均匀丙烷-空气混合气体超压峰值呈下降趋势,其超压峰值出现的时间变短。  相似文献   

5.
25米~3单砖建筑物应用爆炸减压板保护的爆炸试验   总被引:1,自引:0,他引:1  
本文介绍了在25米~3单砖建筑物中进行的四次液化石油气-空气混气的爆炸试验。由于建筑物内壁装了爆炸减压板,爆炸最大压力被减低到8千帕之下,建筑物主体结构完好无损。 建筑物内的很多化学操作都含有可燃液体或者可燃气体。当工艺设备出现偶然的破碎时,燃气或者可燃液体的蒸气便能够播散在建筑物内,与空气混合后形成爆炸混合物。为了防止这种可燃混气爆炸对建筑物造成严重破坏,常规方法对建筑物设置泄压面积。文  相似文献   

6.
用改进的全耗型燃烧器火焰光度法测定锂的研究   总被引:1,自引:0,他引:1  
本文报导了用改进的贝克曼燃器火焰分光光度法测定锂的研究。改进后的燃烧器可采用液化石油气——氧气。直接测定铋中锂的下限为50μg/g,分析结果同发射光谱法很好地符合。  相似文献   

7.
YC-2型超声液位计是为液化石油气大型贮液罐中的液位测量而设计的.它采用晶体管和集成电路、数字显示,并有距离增益控制电路、声速校准电路和超位报警电路,适于高压密闭容器中的液位测量.  相似文献   

8.
为了简化小型天然气液化流程中的制冷装置,增加产品的收益率,设计了一种利用液氮冷能且带精馏的天然气液化流程,在得到液化天然气(LNG)的同时得到液化石油气(LPG)。采用HYSYS软件对流程进行模拟,选取P-R方程计算天然气气液相平衡特性,以生产单位质量的LNG耗功最小为目标函数进行优化,得到了关键节点参数,主要分析了塔内工作状况和换热器管路的热负荷分布情况。结果表明:塔的操作压力对产品纯度影响很大,换热器过大的温差和负荷造成了主要的火用损失,LNG回收率大于90%。  相似文献   

9.
我们首次用液化石油气制成粒子探测器. 它工作在SQS方式. 如果把它作为探测器单元之一应用于正、负电子对撞机谱仪或其他高能谱仪, 可大幅度降低造价和运行费用. 它还可以用于低能核技术、保健物理、环境保护等领域.  相似文献   

10.
本文提出:锡-铟-铅合金中高含量锡、铟、铅的测定,采用选择合适的吸收线和使用空气-液化石油气火焰的方法。对人工模拟样品和合金样品进行试验,并通过电子计算机进行数据处理,得到比较满意的分析结果,相对误差不超过4ppt。  相似文献   

11.
超长(大)建筑物的抑燃泄压试验研究   总被引:5,自引:0,他引:5  
本文分析了爆炸抑制系统、情性化抑爆系统和爆炸泄压三种技术在有爆炸危险性的超长(大)建筑物中应用的限制,在此基础上提出了“抑燃泄压”技术,并在 1m3, 7 m3和 30 m3试验容器内做了一系列试验。试验结果证明这种技术对于超长(大)建筑物的防爆是有效的。  相似文献   

12.
CH4-O2-N2预混气体爆炸二维数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
 利用CFD软件,基于ISAT算法和简化的甲烷氧化基元反应模型,建立了CH4-O2-N2预混气体的二维湍流爆炸模型。数值计算结果表明,该模型较好地模拟了CH4-O2-N2预混气体在高温气团作用下的点火、燃烧和爆炸过程。计算中,考察了高温点火气团的初始温度和混合气体初始组分对CH4-O2-N2预混气体燃烧和爆炸过程的影响。结果表明:高温气团的初始温度对CH4-O2-N2预混气体的点火延迟时间和燃烧初始阶段有重要影响,但对CJ爆燃没有影响;惰性气体N2的加入,降低了混合气体的反应活性,导致点火延迟时间增大,燃烧反应速度、爆炸超压和重要自由基浓度都随之减小。相同条件下爆炸超压峰值的计算结果与实验测量结果符合较好。  相似文献   

13.
在20 L标准球形爆炸罐内开展了当量比为1的甲烷-氢气-空气混合气体爆炸实验,通过改变点火能量和氢气体积分数,探讨点火能量和气体比例对其爆炸压力和爆炸强度的影响。研究发现:氢气比例越高,爆炸冲击波传播速度越快,点火能对冲击波传播速度的影响相对较小;点火能量的提高对峰值超压有增强作用,氢气比例低时,此增强作用较显著,氢气比例高时,此增强作用较弱;点火能量对爆炸强度指数KG的影响较小,而氢气比例对爆炸强度指数KG的影响十分明显,氢气比例低于50%时,氢气比例的增加对爆炸强度的增强作用较弱,氢气比例高于50%时,氢气的增加对爆炸强度的激励作用急剧增强。另外发现,相同当量比条件下,氢气的爆炸强度指数近似为甲烷爆炸强度指数的10倍。  相似文献   

14.
Combustion phenomena change as the conditions in which they are occurring change. Proper understanding and reliable prediction of these phenomena, including important explosion indexes (e.g., flammability limits, explosion pressures), are required for achieving safe and optimal performance of industrial processes and creating new applications. To this end, we investigated the influence of the residence time on aforementioned parameters of n-butane–oxygen mixture and a typical mixture for ethylene oxide production: methane–ethylene–oxygen, focusing on how elevated conditions affect the upper explosion limit and the explosion pressure. Elevated initial conditions (T = 230 °C, P = 4–16 bar) cause pre-ignition reactions to occur in the regime of the low temperature oxidation mechanism (LTOM). These reactions change the mixture composition prior to ignition. For both mixtures investigated, these changes in the initial mixture composition, due to pre-ignition reactions, result in a different explosion pressure. This is significant, because pressure rise is used as the ignition criterion. Consequently, a different classification of the investigated mixtures, as flammable or non-flammable, is possible, depending on the residence time prior to ignition. The experimental results are compared with theoretical calculations performed using detailed reaction kinetic models.  相似文献   

15.
Heat release during the sublimit reaction, induction period, and explosion in stoichiometric hydrogen-oxygen and methane-oxygen mixtures near the third ignition limit is measured. It is shown that, for the hydrogen-oxygen reaction, the third limit pressure, sublimit reaction rate, and reaction rate during the induction period depend not only on the state and nature of the reactor wall surface, but also on the sequence of introduction of the reactants. It was found that heat released during the induction period is close to that released during the explosion. Changing the order of introduction of the explosive mixture components into the reactor leads to a drastic change in the dark reaction rate. It was found that the main reaction (90%) in detonating gas below the ignition limit and during the induction period occurs with the participation of the reactor wall surface. The main product of the heterogeneous reaction is hydrogen peroxide, which accumulates and, together with the initial mixture, creates conditions for ignition. An analysis of the results and literature data suggests that the ignition of detonating gas is a degenerate process (in N.N. Semenov’s terminology). For the methane-oxygen reaction, the third limit pressure, as well as the rates of the sublimit and induction-period reactions, depend on the state and nature of the reactor wall surface, while being independent of the order of introduction of the reactants.  相似文献   

16.
A numerical simulation of the ignition and combustion of hydrocarbon-hydrogen-air homogeneous and heterogeneous (gas-drop) ternary mixtures for three hydrocarbon fuels (n-heptane, n-decane, and n-dodecane) is for the first time performed. The simulation is carried out based on a fully validated detailed kinetic mechanism of the oxidation of n-dodecane, which includes the mechanisms of the oxidation of n-decane, n-heptane, and hydrogen as constituent parts. It is demonstrated that the addition of hydrogen to a homogeneous or heterogeneous hydrocarbon-air mixture increases the total ignition delay time at temperatures below 1050 K, i.e., hydrogen acts as an ignition inhibitor. At low temperatures, even ternary mixtures with a very high hydrogen concentration show multistage ignition, with the temperature dependence of the ignition delay time exhibiting a negative temperature coefficient region. Conversely, the addition of hydrogen to homogeneous and heterogeneous hydrocarbon-air mixtures at temperatures above 1050 K reduces the total ignition delay time, i.e., hydrogen acts as an autoignition promoter. These effects should be kept in mind when discussing the prospects for the practical use of hydrogen-containing fuel mixtures, as well as in solving the problems of fire and explosion safety.  相似文献   

17.
随着城市的发展,位于城市边缘的燃气储配站逐渐转移到了城市中心,而储配站存在燃气泄漏爆炸的可能,给城市公共安全带来潜在的风险。基于GIS技术建立了南京某燃气储配站所在区域的几何模型,导入FLACS软件进行甲烷气云爆炸数值模拟,研究了储配站气云爆炸发展过程与荷载分布规律,讨论了气云大小、点火位置以及气云位置对爆炸超压的影响,最后根据模拟结果划出爆炸损伤范围。结果表明:将GIS技术应用于FLACS模型建立可以大大缩短建模时间并提高模型精度;当气云尺寸不小于60 m且点火位置存在明显约束或障碍时,点火后可能产生爆燃;气云位于储罐西南侧时将造成大范围的人员轻伤和建筑物轻微损坏,并造成一定范围的人员重伤和建筑物的严重损坏;为避免气云爆炸产生严重后果,储配站附近应尽量减少高大密集的建筑群。  相似文献   

18.
为解决瓦斯输送过程中的爆炸安全问题,探索寻找绿色环保且阻火性能优越的新型抑爆剂,开展了当量比下甲烷-空气预混气体爆炸传播过程中的七氟丙烷抑爆效果研究。实验采用长径比L/D=108的水平管道爆炸特性测试系统,研究了在强点火作用下不同体积分数的七氟丙烷对9.5%甲烷-空气预混气体最大爆炸压力、最大压力上升速率和火焰传播速度的影响。实验结果显示:将2.5 m长的管段作为七氟丙烷抑爆区时,七氟丙烷阻断9.5%甲烷-空气预混气体爆炸火焰传播的最小体积分数为5%;当七氟丙烷的体积分数为1%~4%时,不仅无法阻断爆炸火焰的传播,而且与对照组相比,会使火焰传播速度加快;当七氟丙烷的体积分数为1%~6%时,爆炸源及管道末端处的爆炸压力峰值随着七氟丙烷体积分数的增加而逐渐减小;当七氟丙烷的体积分数为3%时,抑爆区处的爆炸压力峰值与对照组相比增幅为10.9%。  相似文献   

19.
Understanding the causes and mechanisms of large explosions, especially dust explosions, is essential for minimising devastating hazards in many industrial processes. It is known that unconfined dust explosions begin as primary (turbulent) deflagrations followed by a devastating secondary explosion. The secondary explosion may propagate with a speed of up to 1000 m/s producing overpressures of over 8–10 atm, which is comparable with overpressures produced in detonation. Since detonation is the only established theory that allows rapid burning producing a high pressure that can be sustained in open areas, the generally accepted view was that the mechanism explaining the high rate of combustion in dust explosions is deflagration-to-detonation transition. In the present work we propose a theoretical substantiation of an alternative mechanism explaining the origin of the secondary explosion producing high speeds of combustion and high overpressures in unconfined dust explosions. We show that the clustering of dust particles in a turbulent flow ahead of the advancing flame front gives rise to a significant increase of the thermal radiation absorption length. This effect ensures that clusters of dust particles are exposed to and heated by radiation from hot combustion products of dust explosions for a sufficiently long time to become multi-point ignition kernels in a large volume ahead of the advancing flame. The ignition times of a fuel–air mixture caused by radiatively heated clusters of particles is considerably reduced compared with the ignition time caused by an isolated particle. Radiation-induced multipoint ignitions of a large volume of fuel–air ahead of the primary flame efficiently increase the total flame area, giving rise to the secondary explosion, which results in the high rates of combustion and overpressures required to account for the observed level of overpressures and damage in unconfined dust explosions, such as for example the 2005 Buncefield explosion and several vapour cloud explosions of severity similar to that of the Buncefield incident.  相似文献   

20.
Experiments carried out in a rapid-injection setup with tangential introduction of the mixture into the reactor show that the mixtures self-ignite at temperatures substantially lower than the values reported in the literature. The measured ignition delay times do not exceed 0.1–0.2 s, although thermal conditions in the reactor allow the mixture to ignite with delays of more than 10 s. Videorecording shows that the mixture spontaneously ignites in a small volume at the center of the reactor; i.e., tangential mixture injection produces a vortex with a hotspot having a temperature at its center by more than 200 K higher than that of the reactor walls. An obstacle destroying the vortex eliminates the anomalous behavior of the self-ignition process. Temperatures measured at the center of the reactor with a thermocouple confirm the formation of a hotspot. The flame initiated by the ignition at a hotspot propagates through the mixture at a velocity several times higher than the laminar flame speed characteristic of the mixture. The mechanism of the formation of hotspots in unsteady vortex flows and their possible effect on explosion risk assessment in some practical situations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号