首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The decay of a dusty plasma in a photoemission cell under microgravity conditions is investigated on the basis of the method of nonlocal moments. It is founds that plasma decay in space experiments occurs in accordance with the mechanism of free electron diffusion followed by dust particle drift. An analytic solution is found for the evolution of radial distributions of the dust particle concentration and the electric field under the experimental conditions. The effect of abnormally high temperatures of dust particles is considered. The effect of axial magnetic fields on the decay of dusty plasma is investigated. It is shown that the plasma decay in a magnetic field is governed by the ambipolar diffusion mechanism, the decay being prolonged up to 103 s in a magnetic field on the order of 103–104 G in strength.  相似文献   

2.
This article presents the experimental study of dust structures formed in striations of glow discharge in an external magnetic field of up to 104 G, which was created using a cryomagnet. A magnetic field classification based on probe theory is described. In moderate magnetic field, we obtained stable dust structures. The corresponding experimental setup and the experiment itself are described in detail. Special attention was paid to the influence of magnetic field on the change of the diameter and inter‐particle distance of dusty cloud. And, we also determined the dependence of angular velocity of dust rotation on magnetic induction.  相似文献   

3.
In this work, we, for the first time, present the experimental study of complex plasmas in glow discharge in the narrow region of the current channel under magnetic fields up to 104 G. We obtain the conditions for the existence and stability of structures under the whole range of the magnetic field. We could detect a record‐breaking rotation velocity of the dusty structure, reaching 15 rad/s. Measurements of the angular velocity behaviour under varied magnetic fields were performed. In order to characterize the geometry of the dusty structure as a function of the magnetic induction, the size and shape of the sections normal to the discharge axis were measured. The inter‐particle distance as another informative characteristic was fixed for structures under a whole range of the applied magnetic field. Based on the results of the mentioned observations, we propose a qualitative interpretation of the rotation variation with the magnetic field. This interpretation includes the model of mechanisms driving the rotation of the dusty structure.  相似文献   

4.
This paper reports on a test using laser Doppler anemometry of the hypothesis that the magnetomechanical effect involves rotation of the plasma of the positive gas-discharge column in an axial magnetic field. This was done by measuring the velocities of the dust macroparticles dropping in a vertical discharge tube. No rotation of the gas was revealed at a sensitivity of 40 cm/s. The rotation of dust particles suspended in striations and in the trap near the narrowed region of the discharge in a magnetic field was observed. The possible connection of this rotation with the magnetomechanical effect is discussed.  相似文献   

5.
The collective dynamics of an annulus dusty plasma formed between a co-centric conducting (non-conducting) disk and ring configuration is studied in a strongly magnetized radiofrequency (rf) discharge. A superconducting electromagnet is used to introduce a homogeneous magnetic field to the dusty plasma medium. In the absence of the magnetic field, the dust grains exhibit thermal motion around their equilibrium position. The dust grains start to rotate in the anticlockwise direction with increasing magnetic field (B > 0.02 T ), and the constant value of the angular frequency at various strengths of the magnetic field confirms the rigid body rotation. The angular frequency of dust grains linearly increases up to a threshold magnetic field (B > 0.6 T ) and after that its value remains nearly constant in a certain range of magnetic field. Further increase in magnetic field (B > 1 T ) lowers the angular frequency. Low value of the angular frequency is expected by reducing the width of the annulus dusty plasma or the input rf power. The azimuthal ion drag force due to the magnetic field is assumed to be the energy source which drives the rotational motion. The resultant radial electric field in the presence of a magnetic field determines the direction of rotation. The variation of floating (plasma) potential across the annular region at given magnetic field explains the rotational properties of the annulus dusty plasma in the presence of a magnetic field.  相似文献   

6.
An interpretation is given to the previously observed action of a magnetic field on the state of a dusty plasma structure in strata of a glow discharge. The conditions of previous experiments are analyzed, in which a nonuniform rotation and a change in the degree of order of a dusty plasma structure (the translational order), as well as a correlation between them, were revealed. Based on this analysis and on data in the literature on dusty plasmas in a magnetic field, a hypothesis is made that the reason for the rotation of the structure is the ion drag force. Additional experiments on the observation of the onset of rotational motion of a structure in “weak” and “strong” magnetic fields are conducted. It is shown that rotation reversal (and rearrangement of the order of the structure) is caused by changes in the direction of ionic flows—from internal regions of the structure to its periphery and vice versa—in the weak and strong magnetic fields. The results obtained agree qualitatively with the hypothesis adopted, as well as with the data of the two-dimensional theory of strata.  相似文献   

7.
The surface modification of spherical melamine-formaldehyde particles during their levitation in a dusty plasma as a part of plasma–dust structures in a trap formed in strata in a neon glow discharge has been investigated using scanning electron microscopy. The dependence of the particle size on the time of plasma exposure has been found and measured, and the modification of the surface structure has been studied. The source of the observed modification has been interpreted.  相似文献   

8.
The dusty plasma structures in a glow discharge of helium in a tube cooled by superfluid helium at a temperature of 1.6 K and higher have been studied experimentally. The bimodal dust plasma formed by clouds of polydisperse cerium dioxide particles and polymer nanoparticles has been analyzed. We have observed wave oscillations in the cloud of polymer nanoparticles (with a size up to 100 nm), which existed in a narrow temperature range from 1.6 to 2.17 K. Vortices have been observed in the dusty plasma structures at helium temperatures.  相似文献   

9.
10.
Ordering of dust grains suspended in glow discharge plasmas into quasi-steady liquid-or crystallike structures in an external field is considered. The self-consistent electric field generated by free electrons, ions, and dust grains is found. An estimate is obtained for the confining potential required to hold dust grains in the direction perpendicular to the discharge axis. It is shown that the potential energy of interaction between ordered dust particles has the form characteristic of ionic crystals. Critical parameters are estimated for a liquidlike dust structure. The correlation function calculated for a dusty plasma by using this approach is compared with a measured one.  相似文献   

11.
In experiments on complex plasmas, afixed strata region in which the levitation of dust structures is observed is investigated using the method of probing by calibrated dust particles of different sizes in an applied magnetic field under elevated pressures. The measured azimuthal velocity of the probing particles corresponds to the action of the ion drag force for 4 μm-size particles and to the entrainment by the rotating gas owing to the electron vortex flow inside the strata for 1 μm-size particles. Extrapolation to pressures and magnetic fields in which the rotation inversion of dust structures is observed in experiments shows that the ion drag is the dominating force causing rotation with a negative projection of the angular velocity onto the magnetic induction.  相似文献   

12.
A dusty plasma in a dc gas discharge is considered at low (cryogenic) temperatures of the gas. The formation of dusty plasma structures consisting of monodisperse poly(styrene) particles (d = 5.44 μm) in a dc glow discharge is experimentally investigated at cryogenic temperatures in the range from 4.2 to 77 K, and the results obtained are presented. The ion velocity distribution function and the charging of dust particles at cryogenic temperatures are calculated using the molecular dynamics method. The primary attention is focused on the correct inclusion of ion-atom collisions in the analysis. This is essential to the understanding of the main mechanisms of the experimentally observed increase in the density of dust particles with decreasing temperature of the gas in the discharge.  相似文献   

13.
The plasma-dust structures in strata in a glow discharge exposed to a longitudinal magnetic field are studied in detail. In a weakly ordered structure, the angular velocity has a vertical gradient. A reversal of rotation of the structure in a magnetic field corresponding to the magnetization of electrons is found. With the help of the pair distribution function of particles, changes in the degree of order of the structure in the magnetic field are revealed. These changes correlate with changes in the angular velocity of rotation. To explain this effect, it is assumed that the dust structure is subjected to the action of ions in crossed electric and magnetic fields.  相似文献   

14.
In present work the formation of dusty plasma structures in cryogenic glow dc discharge was investigated. The ordered structures from large number (~104) of charged diamagnetic dust particles in a cusp magnetic trap have been also studied in microgravity conditions. The super high charging (up to 5·107e) of dust macroparticles under direct stimulation by an electron beam is experimentally performed and investigated. The results of the investigation of Brownian motion for strongly coupled dust particles in plasma are presented. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Directional motion of dust particles in a dusty plasma ratcnet is observed experimentally.The dusty plasma ratcnet consists of two concentric gears with asymmetric sawtooth.It is found that the sawtooth number affects the directional motion of dust particles along the saw channel.With the inerease of the sawtooth number,the particle velocity increases firstly and then decreases,and there is an optimum number of the sawtooth which could induce fast rotation of dust particles.The velocities of dust particles change as they are flowing along the saw channel.We also explore the force acting on the dust particle experimentally.  相似文献   

16.
In this work, we present the investigation of the formation features and internal structure of dust clouds created in plasma of glow discharge in the external magnetic field corresponding to a range of moderate and strong fields, at which the ion component is magnetized. The analysis of the plasma magnetization in the presence of dust components is carried out. We defined the values of magnetic induction at which the changes in dynamics of plasma particles in magnetic field in light inert gases are expected. The experimental setup was built in two versions. For the purpose of generating of magnetic field, the first setup was equipped with ordinary magnetic coils, and the second one included a superconducting solenoid. The discharge tubes, the main chambers where plasma was ignited and maintained in a glow discharge in lowered pressure, also have certain peculiarities, which we describe below. While using helium as a bulk gas, our study focused only on the dust trap in the region of narrowing discharge current. For neon, we used two traps: the striation trap and one just mentioned above placed in the narrowing of the discharge tube. As a result, the steady dust structures in a glow discharge under the magnetization of ions and electrons were obtained for the first time. Dust structures were rotated and tended to form a dust cluster and shell structure. A number of parameters of magnetization achieved in experiments were calculated.  相似文献   

17.
A dusty plasma system consisting of electrons, ions, and negative as well as positive dust particles has been considered. The basic properties of arbitrary amplitude solitary potential structures that may exist in such a multi-component dusty plasma have been theoretically investigated by the pseudo-potential approach. It has been found that the presence of additional positive dust component does not only significantly modify the basic properties of solitary potential structures, but also causes the coexistence of positive and negative solitary potential structures, which is a completely new feature shown in a dusty plasma with dust of opposite polarity.  相似文献   

18.
This paper reports experiments on self-excited dust acoustic waves (DAWs) and its propagation characteristics in a magnetized rf discharge plasma. The DAWs are spontaneously excited in dusty plasma after adding more particles in the confining potential well and found to propagate in the direction of streaming ions. The spontaneous excitation of such low-frequency modes is possible due to the instabilities associated with streaming ions through the dust grain medium. The background E-field and neutral pressure determine the stability of excited DAWs. The characteristics of DAWs strongly depend on the strength of external magnetic field. The magnetic field of strength B < 0.05 T only modifies the characteristics of propagating waves in dusty plasma at moderate power and pressure, P = 3.5 W and p = 27 Pa, respectively. It is found that DAWs start to be damped with increasing the magnetic field beyond B > 0.05 T and get completely damped at higher magnetic field B ∼ 0.13 T. After lowering the power and pressure to 3 W and 23 Pa respectively, the excited DAWs in the absence of B are slightly unstable. In this case, the magnetic field only stabilizes and modifies the propagation characteristics of DAWs while the strength of B is increased up to 0.1 T or even higher. The modification of the sheath electric field where particles are confined in the presence of the external magnetic field is the main cause of the modification and damping of the DAWs in a magnetized rf discharge plasma.  相似文献   

19.
The dust particle size distribution in a volume glow discharge dusty plasma is studied. Polydisperse quartz particles are used as a dust component. It is found that a dusty plasma forms in a glow discharge not only in a dust trap but also near the wall at the bottom of the discharge chamber. Dust objects in the latter region are large: they contain up to 30000 particles. The size of particles levitating in discharge striations is three times larger than that of particles levitating near the wall. The idea of using the glow discharge dusty plasma for particle-size fractionation of polydisperse powder is put forward.  相似文献   

20.
We have studied experimentally the oscillatory process in the dusty plasma in the glow discharge stratum. It is shown that the oscillations are induced by the dust–acoustic instability, as a result of which dust–acoustic solitons are excited. The motion of dust particles in the electric field of solitons has been analyzed. It has been established that a soliton leads to a large-scale unidirectional transport of charged particles in the direction of its motion. The experimental results have been interpreted theoretically using the MHD model of the plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号