首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 192 毫秒
1.
Developing efficient and cost-effective photoanode plays a vital role determining the photocurrent and photovoltage in dye-sensitized solar cells (DSSCs). Here, we demonstrate DSSCs that achieve relatively high power conversion efficiencies (PCEs) by using one-dimensional (1D) zinc oxide (ZnO) nanowires and copper (II) oxide (CuO) nanorods hybrid nanostructures. CuO nanorod-based thin films were prepared by hydrothermal method and used as a blocking layer on top of the ZnO nanowires’ layer. The use of 1D ZnO nanowire/CuO nanorod hybrid nanostructures led to an exceptionally high photovoltaic performance of DSSCs with a remarkably high open-circuit voltage (0.764 V), short current density (14.76 mA/cm2 under AM1.5G conditions), and relatively high solar to power conversion efficiency (6.18%) . The enhancement of the solar to power conversion efficiency can be explained in terms of the lag effect of the interfacial recombination dynamics of CuO nanorod-blocking layer on ZnO nanowires. This work shows more economically feasible method to bring down the cost of the nano-hybrid cells and promises for the growth of other important materials to further enhance the solar to power conversion efficiency.  相似文献   

2.
The controlled growth of ZnO nanorods perpendicular to substrate surface i.e. c-axis by a repeated chemical deposition method for efficient dye-sensitized solar cell application is described. X-ray diffraction study shows the wurtzite structure of ZnO with high crystallinity. Intensity and newly evolved peaks of the ZnO are found to be thickness dependent. Dye loving flower-like globular architecture of ZnO is observed after 8 μm thickness. Dye-sensitized solar cell studies show the solar-to-electrical conversion efficiency of 2.21% for 11 μm ZnO electrode when illuminated with 80 mW/cm2.  相似文献   

3.
Dye-sensitized solar cells (DSSCs) based on a novel composite photoanode of TiO2 nanoparticles coating on electrodeposited ZnO nanotube arrays are fabricated and characterized. An efficiency of 3.94 % is achieved for the composite cell, increasing 86.7 % than 2.11 % of the ZnO nanotubes cell. The short-circuit current (J sc) and open-circuit voltage (V oc) are also enhancing 52.9 % and 25.3 %, respectively. The improvements are because of the high surface area of TiO2 nanoparticles, as well as fast electron transport and light scattering effect of ZnO nanotubes.  相似文献   

4.
In order to improve photovoltaic performance of solar cells based on ZnTe thin films two device structures have been proposed and its photovoltaic parameters have been numerically simulated using Solar Cell Capacitance Simulator software. The first one is the ZnO/CdS/ZnTe conventional structure and the second one is the ZnO/CdS/ZnTe/P+-ZnTe structure with a P+-ZnTe layer inserted at the back surface of ZnTe active layer to produce a back surface field effect which could reduce back carrier recombination and thus increase the photovoltaic conversion efficiency of cells. The effect of ZnO, CdS and ZnTe layer thicknesses and the P+-ZnTe added layer and its thickness have been optimized for producing maximum working parameters such as: open-circuit voltage Voc, short-circuit current density Jsc, fill factor FF, photovoltaic conversion efficiency η. The solar cell with ZnTe/P+-ZnTe junction showed remarkably higher conversion efficiency over the conventional solar cell based on ZnTe layer and the conversion efficiency of the ZnO/CdS/ZnTe/P+-ZnTe solar cell was found to be dependent on ZnTe and P+-ZnTe layer thicknesses. The optimization of ZnTe, CdS and ZnTe layers and the inserting of P+-ZnTe back surface layer results in an enhancement of the energy conversion efficiency since its maximum has increased from 10% for ZnO, CdS and ZnTe layer thicknesses of 0.05, 0.08 and 2 µm, respectively to 13.37% when ZnO, CdS, ZnTe and P+-ZnTe layer thicknesses are closed to 0.03, 0.03, 0.5 and 0.1 µm, respectively. Furthermore, the highest calculated output parameters have been Jsc?=?9.35 mA/cm2, Voc?=?1.81 V, η?=?13.37% and FF?=?79.05% achieved with ZnO, CdS, ZnTe, and P+-ZnTe layer thicknesses about 0.03, 0.03, 0.5 and 0.1 µm, respectively. Finally, the spectral response in the long-wavelength region for ZnO/CdS/ZnTe solar cells has decreased at the increase of back surface recombination velocity. However, it has exhibited a red shift and showed no dependence of back surface recombination velocity for ZnO/CdS/ZnTe/P?+?-ZnTe solar cells.  相似文献   

5.
ZnO nano-network structures with high porosity were prepared for use in the photoelectrodes of binder-free dye-sensitized solar cells (DSSCs) by DC sputtering and subsequent thermal oxidation. Zn thin films prepared at 100 °C showed nano-network structures with high porosity, while those prepared at 25 °C did not. This was partially attributed to the high mobility of sputter-deposited particles that arrived at the surface of the substrate and partially to a supersaturation mechanism. The prepared nano-network Zn was successfully transformed to ZnO without a morphological change via subsequent annealing in air. The power conversion efficiency of DSSCs based on the ZnO nano-network structures exhibited 10 times higher efficiency than those based on ZnO film prepared at 25 °C because of its large surface area for adsorption of dye molecules. The thickness of the ZnO nano-network structures increased linearly at 10 μm h?1 as a function of sputter time. As the film thickness increased, the power conversion efficiency of DSSCs increased from 1.09% to 1.82%.  相似文献   

6.
In the present work, we demonstrate the fabrication technique of highly translucent layers of nanoparticulated (~50 nm) LuPO4:Eu phosphor, present their basic luminescent properties and give results of their performance in a planar imaging system coupled to a CMOS photodetector. For comparison, the imaging performance of an opaque Gd2O2S:Eu phosphor screen prepared by sedimentation is also shown. The X-ray detection parameters as well as the luminescence efficiency of the investigated films were discussed. Results show that the in-line transmittance at ~600–700 nm, in the range of the phosphor luminescence, varies with respect to the thickness of the films from 40 to 50 % for a film of 67 μm thick to 4–12 % when the thickness increases to 460 μm. Yet, X-ray detection parameters get enhanced as the thickness of the films increases. Those results affect the luminescence efficiency curves of the films under poly-energetic X-ray radiation of various tube energies. The normalized noise power spectrum values were found similar for LuPO4:Eu films and a phosphor screen made using commercial Gd2O2S:Eu powder. The detective quantum efficiency of our films is clearly lower compared to the Gd2O2S:Eu screen from 2 to 10 cycles mm?1 frequency range while the modulation transfer function is lower from 0 to 5.5 cycles mm?1 frequency range. The acquired data allow to predict that high-temperature sintering of our films under pressure may help to improve their imaging quality, since such a processing should increase the luminescence efficiency without significant growth of the grains and thus without sacrificing their translucent character.  相似文献   

7.
We have studied the magnetic cluster compound Nb6F15 which has an odd number of 15 valence electrons per (Nb6F12)3+ cluster core, as a function of temperature using nuclear magnetic resonance, magnetic susceptibility, electron magnetic resonance and neutron powder diffraction. Nuclear magnetic resonance of the 19F nuclei shows two lines corresponding to the apical Fa?a nucleus, and to the inner Fi nuclei. The temperature dependence of the signal from the Fi nuclei reveals an antiferromagnetic ordering at T < 5 K, with a hyperfine field of ~2 mT. Magnetic susceptibility exhibits a Curie–Weiss behavior with T N ~5 K, and μ eff ~1.57 μB close to the expected theoretical value for one unpaired electron (1.73 μB). Electron magnetic resonance linewidth shows a transition at 5 K. Upon cooling from 10 to 1.4 K, the neutron diffraction shows a decrease in the intensity of the low-angle diffuse scattering below Q ~0.27 Å?1. This decrease is consistent with emergence of magnetic order of large magnetic objects (clusters). This study shows that Nb6F15 is paramagnetic at RT and undergoes a transition to antiferromagnetic order at 5 K. This unique antiferromagnetic ordering results from the interaction between magnetic spins delocalized over each entire (Nb6F 12 i )3+ cluster core, rather than the common magnetic ordering.  相似文献   

8.
In this paper, ZnO microspheres, which are composed of irregular nanoparticles, have been synthesized successfully from a metal-organic precursor. The average diameter is about 3.5 μm and the specific surface area is 7.53 m2 g?1. Measured by electrochemical tests as electrode materials for supercapacitors, the ZnO powders show high specific capacitances (1017.5 Fg?1 at 5 Ag?1 and 562.5 Fg?1 at 50 Ag?1, respectively) and excellent cycling stability (the specific capacitance was kept at 631.2 Fg?1 and 89.2 % retention after 3000 cycles at 18 Ag?1). These results show that the microspherical ZnO could be a potential electrode material for supercapacitors.  相似文献   

9.
This paper introduces design and simulation of a three-dimensional complementary metal–oxide–semiconductor CMOS compatible photo-sensor based on a silicon substrate. In the structure of photo-sensor, a vertical n+/p junction as a photosensitive area is formed on one side of a U-groove, and perpendicular to a lateral n-i-p structure on top-side of the silicon surface. This configuration enables a direct butt-coupling of a fiber-optic to the photosensitive area, which is a privilege for many remote monitoring applications. The device analysis is carried out by a two-dimensional simulation using SILVACO TCAD simulator. The thickness of the photo-sensitive area is investigated by considering the figures of merit for the two different thicknesses of 30 and 50 µm. The simulated results (according to the parameters defined for the Si substrate) show a very low dark current of 70 and 100 (fA/μm) for the 30 and 50 µm thicknesses, respectively. In addition, a high photo-current to dark current ratio of ~3000 is achieved under an intensity of 2 mW/cm2 at 633 nm wavelength, according to the wavelength of red He–Ne laser. The sensor demonstrates a responsivity of 0.33 A/W corresponding to 65% external quantum efficiency and a ?3 dB frequency response of 0.2 GHz under a small signal of 2 mW/cm2 at 633 nm wavelength for 10 V reverse bias.  相似文献   

10.
The formation of stable, low resistance and nonrectifying contacts to Cu2ZnSnS4 (CZTS) thin film photovoltaic material are the major and critical challenges associated with its effect over the output performance of fabricated solar cells. The solution of continuity equation in one dimension for a soda lime glass substrates (SLG) |Mo | CZTS | CdS | ZnO:Al cell structure is considered in the simulation of its current–voltage characteristics that is governed by the back contact material, acceptor concentration as well as thickness of the CZTS layer. Our primary simulation shows a 6.44% efficiency of the CZTS solar cell which is comparable to reported experimental data if these parameters are not optimized. However, by optimizing them a simulated conversion efficiency as high as 13.41% (Voc=1.002 V, Jsc=19.31 mA/cm2, fill factor (FF)=69.35%) could be achievable. The solar cell with a back contact metal work function of 5.5 eV, an absorber layer's thickness of 2.68 μm and an acceptor concentration of 5×1016 cm−3 were optimum. The presented optimization is ideal and subject to experimental verification with a precise control of the process parameters along with reduced surface as well as bulk recombination, secondary phases and thermalization losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号