首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In order to investigate the propagation characteristics of linear and non-linear ion acoustic waves (IAWs) in electron–positron–ion quantum plasma in the presence of external weak magnetic field, we have used a quantum hydrodynamic model, and degenerate statistics for the electrons and positrons are taken into account. It is found that the linear dispersion relation of the IAW was modified by the externally applied magnetic field. By using the reductive perturbation technique, a gyration-modified Korteweg-de Vries equation is derived for finite amplitude non-linear IAWs. Time-dependent numerical simulation shows the formation of an oscillating tail in front of the ion acoustic solitons in the presence of a weak magnetic field. It is also seen that the amplitude and width of solitons and oscillating tails are affected by the relevant plasma parameters such as quantum diffraction, positron concentration, and magnetic field. We have performed our analysis by extending it to account for approximate soliton solution by asymptotic perturbation technique and non-linear analysis via a dynamical system approach. The analytical results show the distortion of the shape of the localized soliton with time, and the non-linear analysis confirms the generation of oscillating tails.  相似文献   

3.
M Chen  S Wan 《J Phys Condens Matter》2012,24(32):325502, 1-325502, 6
We study a star lattice with Rashba spin-orbit coupling and an exchange field and find that there is a quantum anomalous Hall effect in this system, and that there are five energy gaps at Dirac points and quadratic band crossing points. We calculate the Berry curvature distribution and obtain the Hall conductivity (Chern number ν) quantized as integers, and find that ν?=-?1,2,1,1,2 when the Fermi level lies in these five gaps. Our model can be viewed as a general quantum anomalous Hall system and, in limit cases, can give what the honeycomb lattice and kagome lattice give. We also find that there is a nearly flat band with ν?=?1 which may provide an opportunity for realizing the fractional quantum anomalous Hall effect. Finally, the chiral edge states on a zigzag star lattice are given numerically, to confirm the topological property of this system.  相似文献   

4.
Abstract

Photoconductivity associated with a simple photoconductor model, containing one localised (donor) level, is taken up carefully through different approaches. Two simplified approaches are analysed, that are based on the assumption that some transitions between this level and the allowed bands can be neglected. The respective roles played by these hypotheses are specified through a hierarchical classification, and the limits of validity of the combined approximations are carefully stated. In a parallel direction, the related complete model is presented, which excludes no transitions and is based on Fermi—Dirac statistics. The resolution procedure of the resulting non-linear system of equations is then described, with the purpose of comparing the respective behaviours of all those models.  相似文献   

5.
The separate spin evolution quantum hydrodynamics(SSE-QHD) model is used to investigate the energy behavior for ion acoustic waves in degenerate quantum plasma. Numerical results show that the energy flow speed decreases with spin polarization parameter. It is also shown that it decreases with the increasing rate up to a certain range of wave number and then it goes to zero asymtotically. It is observed that Bohm potential suppresses the energy flow speed. It is also noticed that the energy flow speed deviates from the group velocity even in the absence of Bohm potential effect. However, the contribution of of Bohm poential effect in spin polarized plasma reduces the extent of deviation.  相似文献   

6.
Using the Calogero model as an example, we show that the transport in interacting nondissipative electronic systems is essentially nonlinear and unstable. Nonlinear effects are due to the curvature of the electronic spectrum near the Fermi energy. As is typical for nonlinear systems, a propagating semiclassical wave packet develops a shock wave at a finite time. A wave packet collapses into oscillatory features which further evolve into regularly structured localized pulses carrying a fractionally quantized charge. The Calogero model can be used to describe fractional quantum Hall edge states. We discuss perspectives of observation of quantum shock waves and a direct measurement of the fractional charge in fractional quantum Hall edge states.  相似文献   

7.
The theory of propagation of electrostatic energy through an infinite, homogeneous electron–ion quantum plasma is presented. Simple expressions for the energy flow, energy density, and energy velocity of longitudinal oscillation waves in the system are derived using the linearized quantum hydrodynamic theory for the electron fluid, which incorporates the important quantum statistical pressure and electron diffraction force, while the optical response of the ion particles is characterized by the classical frequency‐dependent dielectric function, ?ion. Both cases of plasmon (high‐frequency) and quantum ion‐acoustic (low‐frequency) waves are considered.  相似文献   

8.
Various mechanisms causing band gap narrowing in strongly heated silicon are considered. In the high-temperature region, it becomes necessary to use Fermi–Dirac quantum statistics to describe carriers, since the silicon chemical potential appears in the valence band and in the conduction band at high carrier concentrations. It is shown that carrier degeneracy under conditions of sufficiently strong heating of intrinsic semiconductor causes strong band gap narrowing. The obtained values of band gap narrowing are compared to experimental results.  相似文献   

9.
Using small wavelength surface acoustic waves (SAW) on ultrahigh mobility heterostructures, Fermi surface properties are detected at 5/2 filling factor at temperatures higher than those at which the quantum Hall state forms. An enhanced conductivity is observed at 5/2 by employing sub-0.5-microm SAW, indicating a quasiparticle mean-free path substantially smaller than that in the lowest Landau level. These findings are consistent with the presence of a filled Fermi sea of composite fermions, which may pair at lower temperatures to form the 5/2 ground state.  相似文献   

10.
This work investigates the interactions among solitons and their consequences in the production of rogue waves in an unmagnetized plasmas composing non-relativistic as well as relativistic degenerate electrons and positrons, and inertial non-relativistic helium ions. The extended Poincare′–Lighthill–Kuo(PLK) method is employed to derive the two-sided Korteweg–de Vries(Kd V) equations with their corresponding phase shifts. The nonlinear Schr o¨dinger equation(NLSE) is obtained from the modified Kd V(m Kd V) equation, which allows one to study the properties of the rogue waves. It is found that the Fermi temperature and quantum mechanical effects become pronounced due to the quantum diffraction of electrons and positrons in the plasmas. The densities and temperatures of the helium ions, degenerate electrons and positrons, and quantum parameters strongly modify the electrostatic ion acoustic resonances and their corresponding phase shifts due to the interactions among solitons and produce rogue waves in the plasma.  相似文献   

11.
《Physics letters. A》2005,342(4):286-293
The exact Maxwell–Boltzmann (MB), Bose–Einstein (BE) and Fermi–Dirac (FD) entropies and probabilistic distributions are derived by the combinatorial method of Boltzmann, without Stirling's approximation. The new entropy measures are explicit functions of the probability and degeneracy of each state, and the total number of entities, N. By analysis of the cost of a “binary decision”, exact BE and FD statistics are shown to have profound consequences for the behaviour of quantum mechanical systems.  相似文献   

12.
We study the conditions for the anomalous transmission of electromagnetic waves through quantum overdense plasma. We show that this anomalous transmission is triggered due to the excitation of surface waves, as was observed in the classical overdense plasma. The conditions for the excitation of surface waves are obtained by studying the dispersion relation within the framework of quantum hydrodynamics. The corresponding consequences at the classical limits are consistent with the previous studies. In comparison with the classical regimes, the quantum dispersion curve exhibits an asymptotic behavior which indicates significant effects, in particular, at large wavelengths. Herein, to create the required evanescent waves, we consider the quantum plasma to be placed between two ordinary prisms and dielectrics. The effects of the main parameters, such as the permittivity of the prisms and dielectrics and the Fermi velocity, on the rate of the transmission and the magnetic field propagation are also evaluated.  相似文献   

13.
Following the idea of three‐wave resonant interactions of lower hybrid waves, it is shown that quantum‐modified lower hybrid (QLH) wave in electron–positron–ion plasma with spatial dispersion can decay into another QLH wave (where electron and positrons are activated, whereas ions remain in the background) and another ultra‐low frequency quantum‐modified ultra‐low frequency Lower Hybrid (QULH) (where ions are mobile). Quantum effects like Bohm potential and Fermi pressure on the lower hybrid wave significantly reshaped the dispersion properties of these waves. Later, a set of non‐linear Zakharov equations were derived to consider the formation of QLH wave solitons, with the non‐linear contribution from the QLH waves. Furthermore, modulational instability of the lower hybrid wave solitons is investigated, and consequently, its growth rates are examined for different limiting cases. As the growth rate associated with the three‐wave resonant interaction is generally smaller than the growth associated with the modulational instability, only the latter have been investigated. Soliton solutions from the set of coupled Zakharov and NLS equations in the quasi‐stationary regime have been studied. Ordinary solitons are an attribute of non‐linearity, whereas a cusp soliton solution featured by nonlocal nonlinearity has also been studied. Such an approach to lower hybrid waves and cusp solitons study in Fermi gas comprising electron positron and ions is new and important. The general results obtained in this quantum plasma theory will have widespread applicability, particularly for processes in high‐energy plasma–laser interactions set for laboratory astrophysics and solid‐state plasmas.  相似文献   

14.
《Physics letters. A》1998,242(3):130-138
We propose a phenomenological approach to quantum liquids of particles obeying generalized statistics of a fermionic type, in the spirit of the Landau Fermi liquid theory. The approach is developed for fractional exclusion statistics. We discuss both equilibrium (specific heat, compressibility, and Pauli spin susceptibility) and nonequilibrium (current and thermal conductivities, thermopower) properties. Low-temperature quantities have the same temperature dependences as for the Fermi liquid, with the coefficients depending on the statistics parameter. The novel quantum liquids provide an explicit realization of systems with a non-Fermi liquid Lorentz ratio in two and more dimensions. Consistency of the theory is verified by deriving the compressibility and f-sum rules.  相似文献   

15.
The Efimov effect is defined as a quantum state with discrete scaling symmetry and a universal scaling factor. It has attracted considerable interests from nuclear to atomic physics communities. In a Dirac semi-metal, when an electron interacts with a static impurity through a Coulombic interaction, the same kinetic scaling and the interaction energy results in the Efimov effect. However, even when the Fermi energy lies exactly at the Dirac point, the vacuum polarization of the electron-hole pair fluctuation can still screen the Coulombic interaction, which leads to deviations from the scaling symmetry and eventually breaks down of the Efimov effect. This energy distortion of the Efimov states due to vacuum polarization is a relativistic electron analogy of the Lamb shift for the hydrogen atom. Motivated by the recent experimental observations in two- and three-dimensional Dirac semi-metals, we herein investigate this many-body correction to the Efimov effect and the conditions that allow some of the Efimov-like quasi-bound states to be observed in these condensed matter experiments.  相似文献   

16.
The oblique propagation of the quantum electrostatic solitary waves in magnetized relativistic quantum plasma is investigated using the quantum hydrodynamic equations. The plasma consists of dynamic relativistic degenerate electrons and positrons and a weakly relativistic ion beam. The Zakharov‐Kuznetsov equation is derived using the standard reductive perturbation technique that admits an obliquely propagating soliton solution. It is found that two types of quantum acoustic modes, that is, a slow acoustic mode and fast acoustic mode, could be propagated in our plasma model. The parameter that determines the nature of soliton, that is, compressive or rarefactive soliton, for slow mode is investigated. Our numerical results show that for the slow mode, the determining parameter is ion beam velocity in the case of relativistic degenerate electrons. We also have examined the effects of plasma parameters (like the beam velocity, the density ratio of positron to electron, the relativistic factor, and the propagation angle) on the characteristics of solitary waves.  相似文献   

17.
Like in the Bose—Einstein case, Fermi—Dirac statistics are shown to correspond to subquantal, causal, space—time behaviour of distinguishable particles correlated by actions-at-a-distance. This justifies the introduction of the non-local hidden parameters introduced by Bohm and Vigier in the stochastic interpretation of quantum mechanics.  相似文献   

18.
19.
In previous papers of the author it was shown that, depending on the hidden parameter, purely quantum problems behave like classical ones. In the present paper, it is shown that the Bose–Einstein and the Fermi–Dirac distributions, which until now were regarded as dealing with quantum particles, describe, for the appropriate values of the hidden parameter, the macroscopic thermodynamics of classical molecules.  相似文献   

20.
Q. Haque  S. Ali Shan 《Physics letters. A》2018,382(38):2744-2748
The impact of electron exchange-correlation term on the linear and nonlinear quantum ion (QIA) acoustic drift waves in a highly degenerate plasma is investigated. An analytical approach is employed to derive the differential equation which is later on turned into Sagdeev energy integral equation that can be utilized to get drift solitons under existence conditions. It is noted that phase speed/frequency of the linear drift quantum ion acoustic (QIA) waves increases with electron exchange-correlation effect, but the amplitude of the corresponding solitons decreases with inclusion of these effects. Present study is carried out with reference to highly dense plasma environments like fast ignition inertial confinement fusion and white dwarfs etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号