首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The model of the relativistic quantum particle in a homogeneous external field is proposed. This model is realized in the one-dimensional relativistic configurational x-space and is described by the finite-difference equation. The momentum p-space in our case is the one-dimensional Lobachevsky space. We have found the wave functions and propagator for the model under study in both x- and p-representations.  相似文献   

2.
The relativistic one-dimensional Klein-Gordon equation can be exactly solved for a certain class of potentials. But the nonrelativistic Schrödinger equation is not necessarily solvable for the same potentials. It may be possible to obtain approximate solutions for the inexact nonrelativistic potential from the relativistic exact solutions by systematically removing relativistic portion. We search for the possibility with the harmonic oscillator potential and the Coulomb potential, both of which can be exactly solvable nonrelativistically and relativistically. Though a rigorous algebraic approach is not deduced yet, it is found that the relativistic exact solutions can be a good starting point for obtaining the nonrelativistic solutions.  相似文献   

3.
A phase space treatment of special relativity of quantum systems is developed. In this approach a quantum particle remains localized if subject to inertial transformations, the localization occurring in a finite phase space area. Unlike in the non-relativistic case, relativistic transformations generally distort the phase space distribution function, being equivalent to aberrations in optics. The relativistic aberrations of massive particles are in general different from those of optical images.  相似文献   

4.
The stationary phase method is frequently adopted for calculating tunneling phase times of analytically-continuous Gaussian or infinite-bandwidth step pulses which collide with a potential barrier. This report deals with the basic concepts on deducing transit times for quantum scattering: the stationary phase method and its relation with delay times for relativistic and non-relativistic tunneling particles. After reexamining the above-barrier diffusion problem, we notice that the applicability of this method is constrained by several subtleties in deriving the phase time that describes the localization of scattered wave packets. Using a recently developed procedure - multiple wave packet decomposition - for some specifical colliding configurations, we demonstrate that the analytical difficulties arising when the stationary phase method is applied for obtaining phase (traversal) times are all overcome. In this case, we also investigate the general relation between phase times and dwell times for quantum tunneling/scattering. Considering a symmetrical collision of two identical wave packets with an one-dimensional barrier, we demonstrate that these two distinct transit time definitions are explicitly connected. The traversal times are obtained for a symmetrized (two identical bosons) and an antisymmetrized (two identical fermions) quantum colliding configuration. Multiple wave packet decomposition shows us that the phase time (group delay) describes the exact position of the scattered particles and, in addition to the exact relation with the dwell time, leads to correct conceptual understanding of both transit time definitions. At last, we extend the non-relativistic formalism to the solutions for the tunneling zone of a one-dimensional electrostatic potential in the relativistic (Dirac to Klein-Gordon) wave equation where the incoming wave packet exhibits the possibility of being almost totally transmitted through the potential barrier. The conditions for the occurrence of accelerated and, eventually, superluminal tunneling transmission probabilities are all quantified and the problematic superluminal interpretation based on the non-relativistic tunneling dynamics is revisited. Lessons concerning the dynamics of relativistic tunneling and the mathematical structure of its solutions suggest revealing insights into mathematically analogous condensed-matter experiments using electrostatic barriers in single- and bi-layer graphene, for which the accelerated tunneling effect deserves a more careful investigation.  相似文献   

5.
According to the Heisenberg correspondence principle, in the classical limit, quantum matrix element of a Hermitian operator reduces to the coefficient of the Fourier expansion of the corresponding classical quantity. In this article, such a quantum-classical connection is generalized to the relativistic regime. For the relativistic free particle or the charged particle moving in a constant magnetic field, it is shown that matrix elements of quantum operators go to quantities in Einstein’s special relativity in the classical limit. Especially, matrix element of the standard velocity operator in the Dirac theory reduces to the classical velocity. Meanwhile, it is shown that the classical limit of quantum expectation value is the time average of the classical variable.  相似文献   

6.
We address the question of which phase space functionals might represent a quantum state. We derive necessary and sufficient conditions for both pure and mixed phase space quantum states. From the pure state quantum condition we obtain a formula for the momentum correlations of arbitrary order and derive explicit expressions for the wave functions in terms of time-dependent and independent Wigner functions. We show that the pure state quantum condition is preserved by the Moyal (but not by the classical Liouville) time evolution and is consistent with a generic stargenvalue equation. As a by-product Baker's converse construction is generalized both to an arbitrary stargenvalue equation, associated to a generic phase space symbol, as well as to the time-dependent case. These results are properly extended to the mixed state quantum condition, which is proved to imply the Heisenberg uncertainty relations. Globally, this formalism yields the complete characterization of the kinematical structure of Wigner quantum mechanics. The previous results are then succinctly generalized for various quasi-distributions. Finally, the formalism is illustrated through the simple examples of the harmonic oscillator and the free Gaussian wave packet. As a by-product, we obtain in the former example an integral representation of the Hermite polynomials.  相似文献   

7.
The Green’s function for a spinless relativistic particle subjected to the action of an electromagnetic plane wave, with local gauge, is determined according to the stochastic quantum mechanics of G. Parisi and Wu. The evaluation was done in two steps: first the classical action is extracted and next the fluctuation factor is calculated. The treatment has been carried out in the phase and configuration spaces.  相似文献   

8.
We present a new method to construct the exactly solvable PT-symmetric potentials within the framework of the position-dependent effective mass Dirac equation with the vector potential coupling scheme in 1 + 1 dimensions. In order to illustrate the procedure, we produce three PT-symmetric potentials as examples, which are PT-symmetric harmonic oscillator-like potential, PT-symmetric potential with the form of a linear potential plus an inversely linear potential, and PT-symmetric kink-like potential, respectively. The real relativistic energy levels and corresponding spinor components for the bound states are obtained by using the basic concepts of the supersymmetric quantum mechanics formalism and function analysis method.  相似文献   

9.
Deformation quantization is a powerful tool for quantizing theories with bosonic and fermionic degrees of freedom. The star products involved generate the mathematical structures which have recently been used in attempts to analyze the algebraic properties of quantum field theory. In the context of quantum mechanics they provide a quantization procedure for systems with either bosonic or fermionic degrees of freedom. We illustrate this procedure for a number of physical examples, including bosonic, fermionic, and supersymmetric oscillators. We show how non-relativistic and relativistic particles with spin can be naturally described in this framework.  相似文献   

10.
Using the notion of symplectic structure and Weyl (or star) product of non-commutative geometry, we construct unitary representations for the Galilei group and show how to rewrite the Schrödinger equation in phase space. This approach gives rise to a new procedure to derive Wigner functions without the use of the Liouville-von Neumann equation. Applications are presented by deriving the states of linear and nonlinear oscillators in terms of amplitudes of probability in phase space. The notion of coherent states is also discussed in this context.  相似文献   

11.
A new family of 2-component vector-valued coherent states for the quantum particle motion in an infinite square well potential is presented. They allow a consistent quantization of the classical phase space and observables for a particle in this potential. We then study the resulting position and (well-defined) momentum operators. We also consider their mean values in coherent states and their quantum dispersions.  相似文献   

12.
We introduce new representations to formulate quantum mechanics on noncommutative phase space, in which both coordinate-coordinate and momentum-momentum are noncommutative. These representations explicitly display entanglement properties between degrees of freedom of different coordinate and momentum components. To show their potential applications, we derive explicit expressions of Wigner function and Wigner operator in the new representations, as well as solve exactly a two-dimensional harmonic oscillator on the noncommutative phase plane with both kinetic coupling and elastic coupling.  相似文献   

13.
Yue Zhou 《Optics Communications》2008,281(20):5278-5281
The Berry phase of a bipartite system described by a Heisenberg XXZ model driven by a one-site magnetic field is investigated. The effect of the Dzyaloshinski-Moriya (DM) anisotropic interaction on the Berry phase is discussed. It is found that the DM interaction affects the Berry phase monotonously, and can also cause sudden change of the Berry phase for some weak magnetic field cases.  相似文献   

14.
The formal solution of a general stargenvalue equation is presented, its properties studied and a geometrical interpretation given in terms of star-hypersurfaces in quantum phase space. Our approach deals with discrete and continuous spectra in a unified fashion and includes a systematic treatment of nondiagonal stargenfunctions. The formalism is used to obtain a complete formal solution of Wigner quantum mechanics in the Heisenberg picture and to write a general formula for the stargenfunctions of Hamiltonians quadratic in the phase space variables in arbitrary dimension. A variety of systems is then used to illustrate the former results.  相似文献   

15.
The Galilean-invariant field theories are quantized by using the canonical method and the five-dimensional Lorentz-like covariant expressions of non-relativistic field equations. This method is motivated by the fact that the extended Galilei group in 3 + 1 dimensions is a subgroup of the inhomogeneous Lorentz group in 4 + 1 dimensions. First, we consider complex scalar fields, where the Schrödinger field follows from a reduction of the Klein-Gordon equation in the extended space. The underlying discrete symmetries are discussed, and we calculate the scattering cross-sections for the Coulomb interaction and for the self-interacting term λΦ4. Then, we turn to the Dirac equation, which, upon dimensional reduction, leads to the Lévy-Leblond equations. Like its relativistic analogue, the model allows for the existence of antiparticles. Scattering amplitudes and cross-sections are calculated for the Coulomb interaction, the electron-electron and the electron-positron scattering. These examples show that the so-called ‘non-relativistic’ approximations, obtained in low-velocity limits, must be treated with great care to be Galilei-invariant. The non-relativistic Proca field is discussed briefly.  相似文献   

16.
The relativistic problem of spinless particle subject to a Kratzer potential is analysed. Bound state solutions for s-waves are found by separating the Klein-Gordon equation into two parts. Unlike the similar works in the literature, the separation make it possible to see explicitly the relativistic contributions, if any, to the solution in the non-relativistic limit.  相似文献   

17.
B. Belchev 《Annals of Physics》2009,324(3):670-681
Dito and Turrubiates recently introduced an interesting model of the dissipative quantum mechanics of a damped harmonic oscillator in phase space. Its key ingredient is a non-Hermitian deformation of the Moyal star product with the damping constant as deformation parameter. We compare the Dito-Turrubiates scheme with phase-space quantum mechanics (or deformation quantization) based on other star products, and extend it to incorporate Wigner functions. The deformed (or damped) star product is related to a complex Hamiltonian, and so necessitates a modified equation of motion involving complex conjugation. We find that with this change the Wigner function satisfies the classical equation of motion. This seems appropriate since non-dissipative systems with quadratic Hamiltonians share this property.  相似文献   

18.
Hong-yi Fan 《Annals of Physics》2008,323(6):1502-1528
We show that Newton-Leibniz integration over Dirac’s ket-bra projection operators with continuum variables, which can be performed by the technique of integration within ordered product (IWOP) of operators [Hong-yi Fan, Hai-liang Lu, Yue Fan, Ann. Phys. 321 (2006) 480], can directly recast density operators and generalized Wigner operators into normally ordered bivariate-normal-distribution form, which has resemblance in statistics. In this way the phase space formalism of quantum mechanics can be developed. The Husimi operator, entangled Husimi operator and entangled Wigner operator for entangled particles with different masses are naturally introduced by virtue of the IWOP technique, and their physical meanings are explained.  相似文献   

19.
The relativistic quantum dynamics of a spinorial quantum particle in the presence of a chiral conical background is investigated. We study the gravitational Berry geometric quantum phase acquired by a spin 1/2 particle in the chiral cosmic string spacetime. We obtain the result that this phase depends on the global features of this spacetime. We also consider the case that a string possesses an internal magnetic flux and obtain the geometric quantum phase in this case. The spacetime of multiple chiral cosmic strings is considered and the relativistic Berry quantum phase is also obtained.  相似文献   

20.
The isotropic oscillator on a plane is discussed where the coordinate and momentum space are both considered to be non-commutative. We also discuss the symmetry properties of the oscillator for three separate cases when the non-commutative parameters Θ and for x and p-space, respectively, satisfy specific relations. We compare the Landau problem with the isotropic oscillator on non-commutative space and obtain a relation between the two non-commutative parameters and the magnetic field of the Landau problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号