首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Superconducting samples with nominal composition Bi1.6Pb0.4Sr2Ca2Cu3Oδ were prepared by the conventional solid-state reaction technique. The samples have been characterized by X-ray diffraction, dc electrical resistivity, ac magnetic susceptibility and thermal conductivity. The X-ray diffraction studies were done at room temperature and the lattice constants of the material were determined by indexing all the peaks. All the above measurements show that, there exists two phases i.e. high-Tc (2 2 2 3) and low-Tc (2 2 1 2). The information obtained from dc electrical resistivity data agrees with ac magnetic susceptibility measurements. The onset temperature Tc (onset) and zero resistivity temperature Tc (R = 0) of the samples remains within the temperature 120 ± 1 K and 103 ± 1 K. Thermal conductivity has been measured with a transient plane source (TPS) technique in the temperature range 77–300 K. The estimation of the electrical resistivity change due to scattering by phonons and impurities has been discussed. An increase in thermal conductivity is observed above and below Tc (R = 0). The electron–phonon scattering time, phonon-limited mobility and the size of the electron–phonon constant are also calculated. Wiedemann–Franz law is applied to gain prediction about the magnitude of electronic and phonon contribution to the total thermal conductivity of the samples. It is observed that heat is mainly conducted by the phonons in this system.  相似文献   

2.
Low-field negative magnetization, of the order of −10−1 emu/g-Oe, from 4.2 K up to room temperature and higher (350 K), and coercive-field magnetization reversal are both present in Cr(3−x)FexX4 for X=S, Se, Te and x=0 to 3, and for Cr5Te8 and Cr7Te8. For Cr2FeSe4 the zero-field-cooled (ZFC) magnetization is negative for 5 Oe and below. To obtain a more detailed knowledge of the magnetic phases involved in the observed magnetization versus temperature M(T) curves, we obtained and studied neutron diffraction (n.d.) scans on the compound Cr2FeSe4, taken at 14 temperatures from 4.2 to 300 K. For this same n.d. sample, the temperature for magnetization reversal of value −3×10−4 emu/g-Oe is 80 K in 40 Oe applied field, then the reversal disappears for 65 Oe applied field. The complex magnetic interactions responsible for this reversal are revealed in the hysteresis curves.  相似文献   

3.
It was observed that the nanocrystallites of BaFe12O19 formed at 140°C under a 0.25 T magnetic field exhibited a higher saturation magnetization (6.1 emu/g at room temperature) than that of the sample (1.1 emu/g) obtained under zero magnetic field. Both of the two approaches yielded plain-like particles with an average particle size of 12 nm. However, the Curie temperature (Tc), a direct measuring of the strength of superexchange interaction of Fe3+–O2−–Fe3+, increased from 410°C for the nanoparticles prepared without an external field applied to 452°C for the particles formed under a 0.25 T magnetic field, which indicates that external magnetic fields can improve the occupancy of magnetic ions and then increase the superexchange interaction. This was confirmed by electron paramagnetic resonance and Mössbauer spectrum analysis. The results present in this paper suggest that in addition to oxygen defects, surface non-magnetic layer and a fraction of finer particles in the superparamagnetic range, cation vacancies should be responsible for the decreasing of saturation magnetization in magnetic nanoparticles.  相似文献   

4.
Results from a solid-state 139La NMR spectroscopic investigation of the anhydrous lanthanum(III) halides (LaX3; X=F, Cl, Br, I) at applied magnetic fields of 7.0, 9.4, 11.7, 14.1, and 17.6 T are presented and highlight the advantages of working at high applied magnetic field strengths. The 139La quadrupolar coupling constants are found to range from 15.55 to 24.0 MHz for LaCl3 and LaI3, respectively. The lanthanum isotropic chemical shifts exhibit an inverse halogen dependence with values ranging from −135 ppm for LaF3 to 700 ppm for LaI3, which represents nearly half of the total lanthanum chemical shift range. The spans of the magnetic shielding tensors also vary widely, from 35 to 650 ppm for the solid LaF3 through LaI3. DFT calculations of the 139La electric field gradient and magnetic shielding tensors have been performed and provide a qualitative interpretation of the trends observed experimentally.  相似文献   

5.
We report 63,65Cu spin–lattice relaxation rates measured by nuclear quadrupole resonance (NQR) in the delafossite compound CuYO2 and CuYO2:Ca over a temperature range from 200 to 450 K. CuYO2:Ca is a prototype transparent oxide exhibiting p-type electrical conductivity. Relaxation rates in CuYO2:Ca are enhanced by one to two orders of magnitude relative to undoped material, exhibit much stronger temperature dependence, and contain contributions from magnetic and quadrupolar relaxation mechanisms with roughly equal strengths. Relaxation in undoped CuYO2 is of purely quadrupolar origin and is attributed to interactions with lattice phonons. The main focus of this paper is the magnetic contribution to the relaxation rate in CuYO2:Ca which is attributed to the hyperfine fields of carriers. It is argued that the dynamics of the hyperfine field are dominated by the hopping rate for carrier transfers between neighboring atoms in the copper planes of the delafossite structure. Comparison of the magnetic relaxation rates with the DC conductivity permits an estimate of the carrier concentration and mobility.  相似文献   

6.
We have investigated the magnetic behavior of cobalt ferrite nanoparticles with a mean diameter of 7.2 nm. AC susceptibility of colloidal cobalt ferrite nanoparticles was measured as a function of temperature T from 2 to 300 K under zero external DC field for frequencies ranging from f=10 to 10,000 Hz. A prominent peak appears in both χ′ and χ″ as a function of T. The peak temperature T2 of χ″ depends on f following the Vogel–Fulcher law. The particles show superparamagnetic behavior at room temperature, with transition to a blocked state at TBm94 K in ZFC and 119 K in AC susceptibility measurements, respectively, which depends on the applied field. The saturation magnetization and the coercivity measured at 4.2 K are 27.3 emu/g and 14.7 kOe, respectively. The particle size distribution was determined by fitting a magnetization curve obtained at 295 K assuming a log-normal size distribution. The interparticle interactions are found to influence the energy barriers yielding an enhancement of the estimated magnetic anisotropy, K=6×106 erg/cm3. Mössbauer spectra obtained at higher temperatures show a gradual collapse of the magnetic hyperfine splitting typical for superparamagnetic relaxation. At 4.2 K, the Mössbauer spectrum was fitted with two magnetic subspectra with internal fields Hint of 490, 470 and 515 kOe, corresponding to Fe3+ ions in A and B sites.  相似文献   

7.
Quasiparticle (QP) planar tunneling spectroscopy is used to investigate the density of states (DoS) of YBa2Cu3O7 (YBCO). Temperature, crystallographic orientation, doping, damage and magnetic field dependencies confirm that the observed zero-bias conductance peak (ZBCP) is an Andreev bound state (ABS), an intrinsic property of a d-wave superconducting order parameter (OP) at an interface. In zero applied field, the splitting of the ZBCP below 8 K confirms a near-surface phase transition into a superconducting state with spontaneously broken time-reversal symmetry (BTRS). Tunneling into the ABS provides a phase-sensitive spectroscopy that can be used to measure a variety of DoS properties in an unconventional superconductor.  相似文献   

8.
Brillouin-Mandelstam scattering (BMS) is the scattering of light from acoustical quasiparticles (phonons, magnons and others). The frequency shift under BMS is 10–100 GHz. The observation of BMS from magnons became possible only after J. Sandercock had designed a multi-pass Fabry-Perot interferometer with a high contrast (1971). BMS from magnons has, by now, been observed in CrBr3 (Sandercock), YIG, FeBO3 (Jantz, Sandercock, Wettling), CoCO3 (Borovik-Romanov, Jotikov, Kreines), EuO, EuS (Grünberg, Metawe), Ni, Fe (Sandercock, Wettling), metglasses (Chang, Malozemoff, Grimsditch, Senn, Winterling). In this review the main results of the above works are presented.The dispersion laws of magnons were studied by BMS in the energy range (inaccessible for neutron diffraction) where the contributions due to three types of interaction: magnetic, dipole-dipole, and exchange can be separated.Investigation of BMS in EuO and metals has led to the discovery of surface magnons. BMS from standing spin waves has been observed in thin films of metglasses.By observing BMS, it is possible to study quasiparticles pumped by microwave power. It was found that under ferro- or antiferromagnetic resonance an excess of quasiparticles arises, these quasiparticles being magnons with the frequency equal to that of microwave power and phonons with half the microwave frequency. Scattering of light from parametrically excited magnons has also been observed. This opens new possibilities for studying relaxation processes in magnetic materials.  相似文献   

9.
Polycrystalline perovskite La0.67Ca0.33MnO3 was synthesized by a sol–gel method. Its adiabatic temperature change ΔTad induced by a magnetic field change was measured directly. At 268 K, near its Curie temperature TC, ΔTad of La0.67Ca0.33MnO3 induced by a magnetic field change of 2.02 T reaches 2.4 K. The latent heat Q and magnetic entropy change −ΔSM induced by a magnetic field change were calculated from the temperature dependence of ΔTad and zero-field heat capacity Cp. The maximum values of Q and −ΔSM in La0.67Ca0.33MnO3 induced by a magnetic field change of 2.02 T are 1.85 J g−1 and 6.9 J kg−1 K−1, respectively. The former is larger than the phase transition latent heat of heating or cooling, which is about 1.70 J g−1.  相似文献   

10.
黄逸佳  张国营  胡风  夏往所  刘海顺 《物理学报》2014,63(22):227501-227501
在一些磁性材料内, 磁性离子间交换作用和磁性离子的自旋涨落对材料磁性有影响. 本文根据磁比热实验值确定了晶场参数后, 利用包含自旋涨落的交换作用有效场Hm= n0 (1 + γ T + β eω T)M, 计算了PrNi2晶体晶场能级的Zeeman劈裂. 在温度为3.8 K ≤T≤ 30 K范围内, 计算了该晶体多晶磁矩随外磁场的变化, 以及外磁场H=5000 Oe时磁化率倒数随温度的变化, 计算结果和实验值符合较好. 当外磁场在0–50000 Oe时, 计算的该晶体的磁熵变与已有文献的理论结果相似. 计算结果说明, 提出的包含自旋涨落的交换作用有效场不仅适合亚铁磁性晶体, 而且也适合顺磁性晶体. 关键词: 2')" href="#">PrNi2 磁比热 交换作用有效场 磁矩 磁熵变  相似文献   

11.
The rotational magnetization process of an exchange coupled Ni81Fe19(10 nm)/Fe50Mn50(10 nm) bilayer was studied by Kerr microscopy. The domain processes in rotating magnetic fields near the exchange bias field Heb are very sensitive to local variations of coupling strength and direction. A characteristic domain splitting was found that shows a remarkably different behavior for weaker and stronger coupled areas. While the magnetization in weaker coupled areas follows the rotating field for HHeb, the stronger coupled areas switch back spring-like. As a result high-angle walls are formed between both areas causing rotational hysteresis.  相似文献   

12.
In this work, we present the temperature and 1 MeV irradiation proton effects on the light emission in bulk silicon emitter-base junctions for direct and reverse polarizations. Our samples were exposed at room temperature to 5.3 × 108, 5.3 × 1010, 5 × 1011, 5 × 1012 and 5 × 1013 p cm−2. The spectral range for which electroluminescence spectrums were recorded for forward and reverse polarizations is 0.6–2 eV. For forward bias, EL maximum intensity occurs at 1.0923 ± 0.0001 eV (structure (a)) which decreases as function of irradiation fluencies. For reverse bias, the spectra contain two structures (b) and (c). The first structure (c) occurred at 1.6243 ± 0.0013 eV is independent of irradiation while the second structure (b) decreases as function of fluencies irradiation. The Gaussian deconvolution of (b) shows two sub-structures (b1) and (b2) which are located, respectively, at 0.8064 ± 0.0004 eV and 0.9917 ± 0.0016 eV. We studied temperature dependence of full width at half-maximum (FWHM) and we found that the phonons involved in (a), (b1) and (b2) on the one hand and (c) on the other hand are not the same. Moreover, we obtained from the study of EL intensity temperature dependence that the activation energies of (a), (b1) and (b2) are identical and differ from that of (c). These effects enable us to conclude that visible light emission does not have the same origin as that in infra-red. From these observations, we can attribute the structures (a) and (b) to indirect inter-bands transitions and (c) to a direct intra-band transitions.  相似文献   

13.
Far-infrared reflectivity spectra of Cu2S have been measured from 20 to 700 cm−1 at several temperatures through the superionic transition temperature Tc. Many bands and two broad bands were observed at low and high temperatures, respectively. From the spectra, we determined optical dielectric constant , the angular frequencies of longitudinal (LO) and transverse (TO) optical phonons, and transverse effective charge. Based on these values, we suggest significant role of small band gap for high ionic conduction with small activation energy and the possibility of lattice distortion arising from an enhanced effective charge. Anomalous temperature dependence has been found for and TO–LO splitting.  相似文献   

14.
The Hall resistivity (ρxy) and the longitudinal resistivity (ρxx) in c-axis-oriented superconducting MgB2 thin films have been investigated in extended fields up to 18 T. We have observed a scaling behavior between the Hall resistivity and the longitudinal resistivity, , where the exponent (β) is observed to be independent of the temperatures and the magnetic fields. For a wide magnetic field region from 1 to 18 T and a wide temperature region from 10 to 28 K, a universal power law with β = 2.0 ± 0.1 was observed in c-axis-oriented MgB2 thin films. These results can be well interpreted by using recent models.  相似文献   

15.
Epitaxial thin films of the conductive ferromagnetic oxide SrRuO3 were grown on an (0 0 1) SrTiO3 (STO) substrate by using DC sputtering technique. The magnetic and magnetoresistive properties of the films were measured by applying the magnetic field both perpendicular (out-of-plane) and parallel (in-plane) to the film plane and ever maintaining the direction of the applied field perpendicular to that of the transport current. The films grown on an (0 0 1) STO substrate showed identical magnetization properties in two orthogonal crystallographic directions of the substrate, [1 0 0]S and [0 0 1]S (in-plane and out-of-plane geometry), which suggests the presence of a multi domain structure within the plane of the film. For such samples, no anisotropic field (hard axis) along de [0 0 1]s direction, i.e., perpendicular to the film-plane could be detected. Nevertheless, a distinguishable temperature dependent out-of-plane anisotropic magnetoresistance (MR) along with strong temperature dependent low field hysteretic MR(H) behavior was detected for the studied films. A negative MR ratio MR(T)=[ρ0H=9 T; T)−ρ( μ0H=0 T; T)]/ρ( μ0H=0 T; T) on the order of a few percent, with maximums of 6% and 4% (right at the Curie temperature, TC 160 K) was calculated for an in-plane and out-of plane measuring geometry, respectively. In addition there is an equally strong MR effect at low temperatures, which might be related to the temperature dependence of the magnetocrystalline anisotropy together with a magnetization rotation. Both the MR(T) behavior and the achieved values (except for T<30 K) are similar to those obtained on SrRuO3 films grown on 2° miscut (0 0 1) STO substrates with the current parallel to the field and parallel to the direction, which was identified as the easier axis for magnetization.  相似文献   

16.
Magnetization measurements on the Fe60Mn5Ni35 and Fe50Mn15Ni35 alloy samples were carried out in the temperature range 80T300 K and in magnetic fields up to 8 kOe. The Fe60Mn5Ni35 was found to order ferromagnetically with a Curie temperature, Tc, above 300 K. From the temperature dependence of the spontaneous magnetization, Ms, it was concluded that the magnetic behavior of Fe60Mn5Ni35 follows Wohlfarth theory of weak itinerant ferromagnet. The Fe50Mn15Ni35 sample exhibits a magnetic phase transition from ferromagnetism to paramagnetism at Tc=242 K. The critical amplitudes and critical exponents (β, γ and δ) have been determined by using Arrott plots, Kouvel–Fisher method and scaling plots of the reduced magnetization and reduced magnetic field. The values of β, γ and δ are discussed and compared with the results obtained for various theoretical models and also with the experimentally determined values for related systems obtained by others.  相似文献   

17.
We report X-ray diffraction, DC-susceptibility, electron spin resonance (ESR), and dilatometry measurements carried out on an La7/8Sr1/8MnO3 single crystal. Thermal expansion was measured along different crystallographic axes using a three-terminal dilatometer. The sharp anomalies observed in the temperature dependence of Δl/l allowed us to locate the Jahn–Teller transition at TJT=285(1) K. ESR experiments were carried out in the paramagnetic regime from 220 to 570 K, at 9.4 GHz. We measured the ESR line width ΔHpp(T) with the magnetic field parallel to the crystallographic directions [1 0 0] and [0 0 1], referred to the orthorhombic (Pbnm) axes. We correlate the temperature dependence of ΔHpp with the structural changes of the lattice.  相似文献   

18.
Magnetotransport data measured in thin films of La0.55Ho0.15Sr0.3MnO3 down to very low temperatures (0.25 K) are reported. The samples presented colossal magnetoresistance with a TC close to 200 K. A minimum in the resistance vs. T curve and a drop in the ZFC magnetization were also observed. It was also found a T-dependent relaxation effect after the magnetic field was either applied or removed. These results can be understood within the framework where electronic scattering occurs across magnetic domain walls in a reentrant spin-glassy-like phase.  相似文献   

19.
X-ray diffraction (XRD) and Mössbauer spectroscopy were used to study the annealing of the Fe40Ni38Mo4B18 amorphous alloy. The samples were isothermally annealed in the 858–878 K temperature range several times. Two crystalline phases were observed in the annealed samples: FeNi3 and (Fe, Ni, Mo)23B6. Preliminary results indicate that assuming a linear relationship between the area under the main XRD peak associated with the FeNi3 phase and its volume fraction, this can be fitted to a Johnson–Mehl–Avrami equation with an exponent n close to 1.0. Mössbauer results show a broad magnetic hyperfine field distribution in as-received samples and, consistent with XRD results, a sextet attributed to precipitates of FeNi3 (Bhf=29.5 T) for long annealing times.  相似文献   

20.
A study of the magnetic aftereffect in co-precipitated cobalt ferrite is presented. Measurements of the magnetic viscosity S were performed at room temperature along the demagnetization curve for different applied fields Hap over a wide range of fields (0 kOe<Hap<−7 kOe). The interrelation function η=(∂Mrev/∂Mirr)Hi between the DCD reversible Mrev and irreversible Mirr magnetization components was determined as well. The experimental results for Sη(Hi), where Hi is the internal field, showed a broad distribution with a maximum at Hi=2.7 kOe. However, the irreversible susceptibility χirr displays a maximum at Hc=0.75 kOe, the coercivity of the material. The experimental behavior of η and the non-proportionality between Sη and χiirr suggest that the magnetic viscosity in this material is principally supplied by events of nucleation of inverse domains and the depinning of domain walls. When the main mechanism of reversal magnetization changes to rotation of magnetic moments for all the grains, the magnetic viscosity decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号