首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
液态泡沫结构及其稳定性   总被引:2,自引:0,他引:2  
孙其诚  黄晋 《物理》2006,35(12):1050-1054
液态泡沫由大量气泡密集堆积在少量的表面活性剂溶液中形成,是具有高度自组织结构的典型的软物质.文章从泡沫物理学角度简要介绍了液态泡沫的结构特征和稳定性方面的研究.  相似文献   

2.
短时微重力下气泡尾流效应的动力学特性研究   总被引:1,自引:0,他引:1  
实验研究了微重力环境中,不同热流密度时尾流效应对气泡动力学过程的影响。结果表明,微重力下气泡的尾流效应比常重力时更加明显,低热流密度时尾流对气泡动力学行为影响微弱,中高热流密度时尾流影响效果显著。尾流区内液体的水平流动促进了原生气泡间相互碰撞、合并过程,垂直加热面的流动则给气泡施加了向上的曳力,从而降低了气泡生长周期和脱离半径。尾流区内过冷液体的冷却作用使气泡内形成负压,液体从微柱结构内被吸入气泡底部,为其长大提供新鲜液体,避免局部干斑。尾流效应与微柱结构相互作用,能有效促进加热面的气泡合并和脱离过程,提高表面换热能力。  相似文献   

3.
对窄缝中气泡在磁性液体中的上升与变形进行了可视化研究。定性分析了纳米磁性颗粒引发的黏度效应及表面活性剂分子依附作用对气泡上升速度与形状的影响。试验工质为体积浓度6.33%的水基Fe_3O_4磁性液体,同时对比了质量浓度25%的四甲基氢氧化铵水溶液、质量分数30%和50%的蔗糖溶液以及水中气泡的上升运动。窄缝间隙分别为1 mm和2 mm,气泡由底部不同直径的圆孔产生。试验结果表明:由于活性剂分子的存在,磁性液体气泡上升过程中由扁椭圆形渐转变为上圆下平的冠状,而其略大于水的黏度使气泡在1 mm窄缝中保持直线上升运动,但窄缝间隙增大到2 mm后,磁性液体中气泡的运动轨迹仍会发生振荡。  相似文献   

4.
本文介绍了近期用能量耗散方法探索液态物质结构及其动力学行为的新进展.其中液态物质包括了金属及其合金的熔融态,以及高分子聚合物的溶液和熔融态.该方向的研究工作虽才开始,但已显示出能量耗散技术的广阔应用前景.  相似文献   

5.
本文介绍了近期用能量耗散方法探索液态物质结构及其动力学行为的新进展。其中液态物质包括了金属及其合金的熔融态,以及高分子聚合物的溶液和熔融态。该方向的研究工作虽才开始,但已显示出能量耗散技术的广阔应用前景。  相似文献   

6.
纳米通道内液体流动的滑移现象   总被引:8,自引:0,他引:8       下载免费PDF全文
曹炳阳  陈民  过增元 《物理学报》2006,55(10):5305-5310
采用分子动力学模拟方法研究了液态氩在铂纳米通道内的流动,通过改变流体和壁面之间的势能作用获得了流体和通道表面之间浸润性质不同时的滑移现象. 研究发现:液体分子在亲水性通道表面附近呈类固体性质,数密度和有序性较大,而在疏水性表面附近的平均数密度降低,形成一个低密度层;液体流动在固体表面的速度滑移随着液体与表面势能作用的增强而减小,当液体和表面的浸润性不同时可以发生滑移、表观无滑移和负滑移现象;液体在固体表面的表观滑移是液体在固体表面的速度滑移、粘附和流体内部滑移的综合作用的结果. 关键词: 纳米尺度流动 速度滑移 浸润性 分子动力学模拟  相似文献   

7.
采用气泡-液体两相流动的欧拉-拉氏大涡模拟,研究了矩形通道内多股射流形成的气泡-液体两相湍流流动,得到了气液两相湍流瞬态结构,产生和发展过程。研究结果发现气泡和液体都有瞬态大涡结构,气泡脉动比液体的强。大涡模拟统计结果给出了有无气泡两种情况下的液体湍流脉动速度均方根值分布。瞬态和统计结果都表明,气泡增大了液体湍流,液体湍流来源于其自身的剪切产生和气泡的作用。这与二阶矩模型模拟结果定性一致。  相似文献   

8.
针对凹槽基底上含不溶性活性剂液膜的流动过程,采用润滑理论建立液膜厚度和浓度演化模型,通过数值模拟得到液膜的流动特性及相关参数的影响规律.研究表明:含不溶性活性剂液膜在凹槽基底上流动时,重力和活性剂浓度梯度引起的Marangoni力对液膜的流动起促进作用,表面活性剂通过引起表层液体流动进而牵引内部液体运动,但其作用力相对重力较弱,重力起主导作用;与基底尺寸有关的粘性力则起阻碍作用;提高邦德数G和减小毛细力数C具有减弱液膜变形的作用;增大凹槽高度或减小凹槽斜度,均使Marangoni力增加,促使液膜变形加大.  相似文献   

9.
本文主要利用粗粒化分子动力学方法对不同浓度下表面活性剂水溶液在couette流动过程中胶束的形成、速度分布与流变性规律进行了研究。结果表明,对于相同浓度的表面活性剂溶液,随着剪切速率的增大,胶束完全动态平衡时间越来越小;而随着表面活性剂分子浓度的增加,胶束动态平衡时间也越来越小,形成胶束越来越快。在剪切速率与溶液剪切黏度关系方面,保持表面活性剂分子浓度不变情况下,随着剪切速率的增大,剪切黏度逐渐减小,呈现剪切稀化特征。  相似文献   

10.
于佳佳  李友荣  陈捷超  吴春梅 《物理学报》2015,64(22):224701-224701
为了探究Soret效应对具有自由表面的圆柱形浅液池内双组分溶液热对流过程的影响, 通过实验观察了质量分数为50%的正癸烷/正己烷混合溶液在不同深宽比的液池内流动失稳后的自由表面耗散结构及液池内的温度波动. 结果表明, 双组分溶液流动失稳的临界热毛细Reynolds数小于纯工质的值, 且其随液层深宽比的变化规律与纯工质相同. 当深宽比小于0.0848时, 流动失稳后在自由表面观察到热流体波, 监测点处温度波动主频随热毛细Reynolds数增大而增加; 当深宽比大于0.0848时, 随热毛细Reynolds数的增大, 流动失稳后自由表面依次呈现轮辐状、花苞状、分离-合并-分离交替变化的条纹状结构.  相似文献   

11.
A method for geometrical and topological modeling the evolution of close-cell metallic foams based on the Voronoi tessellation in three-dimensional space is presented. Numerical computations were carried out to examine the evolution of the bubble size distribution and topological and geometric properties of aluminum foams in the liquid state, which were implemented by using McPherson’s new theory on coarsening of microstructures as well as the topological transition rules (T1 and T2 processes) in 3D foams, accounting for remarkable effects of both the gas diffusion and surface tension. Computational results show that the bubble size distributions of metallic foams are strongly coupled to the evolution of the cellular structure and dependent on the gas diffusivity and surface tension. The way of foam coarsening can be expressed as RR 32=−mt 2+1 approximately, and gas diffusion between bubbles dominates the evolution of bubble sizes and foam structures. It is found that the average number of faces per bubble is 〈f〉=13.8, which is in good agreement with the values reported in the literature.  相似文献   

12.
The foam/emulsion analogy in structure and drainage   总被引:1,自引:0,他引:1  
The often quoted analogy between foams and emulsions is experimentally tested by studying properties after settling and under forced drainage of oil-in-water emulsions of drop size similar as for bubbles generally used in foam experiments. Observations with regard to structure, water fraction and drainage wave properties confirm the expected similarity in the low flow rate range. However, while for foams a convective circulation on the scale of the container sets in for values of water fraction exceeding about 0.2, no such convection is found in emulsions. Here instabilities are only encountered at water fractions of about 0.4, close to the void fraction of random packings of spheres. These take on the form of descending pulses of increased water fraction and lead to the transition from a frozen to a locally agitated structure.Received: 12 December 2003, Published online: 24 August 2004PACS: 82.70.-y Disperse systems; complex fluids - 47.20.-k Hydrodynamic stability - 47.55.Dz Drops and bubbles  相似文献   

13.
We perform forced-drainage experiments in aqueous foams and compare the results with data available in the literature. We show that all the data can be accurately compared together if the dimensionless permeability of the foam is plotted as a function of liquid fraction. Using this set of coordinates highlights the fact that a large part of the published experimental results corresponds to relatively wet foams ( ∼ 0.1 . Yet, most of the foam drainage models are based on geometrical considerations only valid for dry foams. We therefore discuss the range of validity of the different models in the literature and their comparison to experimental data. We propose extensions of these models considering the geometry of foam in the relatively wet-foam limit. We eventually show that if the foam geometry is correctly described, forced drainage experiments can be understood using a unique parameter --the Boussinesq number.  相似文献   

14.
Experiments are presented elucidating how the evolution of foam microstructure by gas diffusion from high to low pressure bubbles can significantly speed up the rate of gravitational drainage, and vice versa. This includes detailed data on the liquid-fraction dependence of the coarsening rate, and on the liquid-fraction and the bubble-size profiles across a sample. These results can be described by a "coarsening equation" for the increase of bubble growth rate for drier foams. Spatial variation of the average bubble size and liquid fraction can also affect the growth and drainage rates.  相似文献   

15.
Experiments by Gittings, Bandyopadhyay and Durian (Europhys. Lett. 65, 414 (2004)) demonstrate that light possesses a higher probability to propagate in the liquid phase of a foam due to total reflection. The authors term this observation photon channelling which we investigate in this article theoretically. We first derive a central relation in the work of Gitting et al. without any free parameters. It links the photon's path-length fraction f in the liquid phase to the liquid fraction ɛ. We then construct two-dimensional Voronoi foams, replace the cell edges by channels to represent the liquid films and simulate photon paths according to the laws of ray optics using transmission and reflection coefficients from Fresnel's formulas. In an exact honeycomb foam, the photons show superdiffusive behavior. It becomes diffusive as soon as disorder is introduced into the foams. The dependence of the diffusion constant on channel width and refractive index is explained by a one-dimensional random-walk model. It contains a photon channelling state that is crucial for the understanding of the numerical results. At the end, we shortly comment on the observation that photon channelling only occurs in a finite range of ɛ.  相似文献   

16.
17.
An apparatus is described for rapidly producing large quantities of foam via turbulent mixing of gas with a narrow jet of a surfactant solution inside a delivery tube. By controlling relative flow rates, the gas volume fraction in the resulting foam may be easily varied across . Using such foams, we present a comprehensive set of data for free drainage as a systematic function of gas fraction and sample geometry. The qualitative behavior can be understood in terms of simple theoretical considerations, emphasizing the importance of controlling the initial foam conditions. Quantitative features are compared with two approximate versions of the drainage equation, highlighting the crucial role of capillarity for very dry foams and small samples. Received 15 February 1999  相似文献   

18.
19.
Foam drainage is considered in a froth flotation cell. Air flow through the foam is described by a simple two-dimensional deceleration flow, modelling the foam spilling over a weir. Foam microstructure is given in terms of the number of channels (Plateau borders) per unit area, which scales as the inverse square of bubble size. The Plateau border number density decreases with height in the foam, and also decreases horizontally as the weir is approached. Foam drainage equations, applicable in the dry foam limit, are described. These can be used to determine the average cross-sectional area of a Plateau border, denoted A, as a function of position in the foam. Quasi-one-dimensional solutions are available in which A only varies vertically, in spite of the two-dimensional nature of the air flow and Plateau border number density fields. For such situations the liquid drainage relative to the air flow is purely vertical. The parametric behaviour of the system is investigated with respect to a number of dimensionless parameters: K (the strength of capillary suction relative to gravity), α (the deceleration of the air flow), and n and h (respectively, the horizontal and vertical variations of the Plateau border number density). The parameter K is small, implying the existence of boundary layer solutions: capillary suction is negligible except in thin layers near the bottom boundary. The boundary layer thickness (when converted back to dimensional variables) is independent of the height of the foam. The deceleration parameter α affects the Plateau border area on the top boundary: weaker decelerations give larger Plateau border areas at the surface. For weak decelerations, there is rapid convergence of the boundary layer solutions at the bottom onto ones with negligible capillary suction higher up. For strong decelerations, two branches of solutions for A are possible in the K = 0 limit: one is smooth, and the other has a distinct kink. The full system, with small but non-zero capillary suction, lies relatively close to the kinked solution branch, but convergence from the lower boundary layer onto this branch is distinctly slow. Variations in the Plateau border number density (non-zero n and h) increase individual Plateau border areas relative to the case of uniformly sized bubbles. For strong decelerations and negligible capillarity, solutions closely follow the kinked solution branch if bubble sizes are only slightly non-uniform. As the extent of non-uniformity increases, the Plateau border area reaches a maximum corresponding to no net upward velocity of foam liquid. In the case of vertical variation of number density, liquid content profiles and Plateau border area profiles cease to be simply proportional to one another. Plateau border areas match at the top of the foam independent of h, implying a considerable difference in liquid content for foams which exhibit different number density profiles. Received 3 July 2001  相似文献   

20.
We use the Surface Evolver to determine the shear modulus G of a dry 2D foam of 2500 bubbles, using both extensional and simple shear. We examine G for a range of monodisperse, bidisperse and polydisperse foams, and relate it to various measures of the structural disorder of each foam. In all cases, the shear modulus of a foam decreases with increasing disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号