首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An algorithm is presented for generating new exact solutions of the Einstein equations for spatially homogeneous cosmological models of Bianchi type VI0. The energy-momentum tensor is of perfect fluid type. Starting from Dunn and Tupper's dust-filled universe, new classes of solutions are obtained. The solutions represent anisotropic universes filled with perfect fluid not satisfying the equation of state. Some of their physical properties are studied.  相似文献   

2.
Locally rotationally symmetric Bianchi type I cosmological models are examined in the presence of dynamically anisotropic dark energy and perfect fluid. We assume that the dark energy (DE) is minimally interacting, has dynamical energy density, anisotropic equation of state parameter (EoS). The conservation of the energy-momentum tensor of the DE is assumed to consist of two separately additive conserved parts. A special law is assumed for the deviation from isotropic EoS, which is consistent with the assumption on the conservation of the energy-momentum tensor of the DE. Exact solutions of Einstein’s field equations are obtained by assuming a special law of variation for the mean Hubble parameter, which yields a constant value of the deceleration parameter. Geometrical and kinematic properties of the models and the behaviour of the anisotropy of the dark energy have been carried out. The models give dynamically anisotropic expansion history for the universe that allows to fine tune the isotropization of the Bianchi metric, hence the CMB anisotropy.  相似文献   

3.
Bianchi type-III cosmological model of universe filled with dark energy from a wet dark fluid (WDF) in presence and absence of magnetic field is investigated in general theory of relativity. We assume that F 12 is the only non-vanishing component of F ij . We obtain exact solutions to the field equations using the condition that expansion is proportional to the shear scalar i.e. (B=C n ). The physical behavior of the model is discussed with and without magnetic field. We conclude that universe model do not approach isotropy through the evolution of the universe.  相似文献   

4.
In this review we discuss the evolution of the universe filled with dark energy with or without perfect fluid. In doing so we consider a number of cosmological models, namely Bianchi type I, III, V, VI0, VI and FRW ones. For the anisotropic cosmological models we have used proportionality condition as an additional constrain. The exact solutions to the field equations in quadrature are found in case of a BVI model. It was found that the proportionality condition used here imposed severe restriction on the energy-momentum tensor, namely it leads to isotropic distribution of matter. Anisotropic BVI0, BV, BIII and BIDE models with variable EoS parameter ω have been investigated by using a law of variation for the Hubble parameter. In this case the matter distribution remains anisotropic, though depending on the concrete model there appear different restrictions on the components of energy-momentum tensor. That is why we need an extra assumption such as variational a law for the Hubble parameter. It is observed that, at the early stage, the EoS parameter v is positive i.e. the universe was matter dominated at the early stage but at later time, the universe is evolving with negative values, i.e., the present epoch. DE model presents the dynamics of EoS parameter ω whose range is in good agreement with the acceptable range by the recent observations. A spatially homogeneous and anisotropic locally rotationally symmetric Bianchi-I space time filled with perfect fluid and anisotropic DE possessing dynamical energy density is studied. In the derived model, the EoS parameter of DE (ω(de)) is obtained as time varying and it is evolving with negative sign which may be attributed to the current accelerated expansion of Universe. The distance modulus curve of derived model is in good agreement with SNLS type Ia supernovae for high redshift value which in turn implies that the derived model is physically realistic. A system of two fluids within the scope of a spatially flat and isotropic FRW model is studied. The role of the two fluids, either minimally or directly coupled in the evolution of the dark energy parameter, has been investigated. In doing so we have used three different ansatzs regarding the scale factor that gives rise to a variable decelerating parameter. It is observed that, in the non-interacting case, both the open and flat universes can cross the phantom region whereas in the interacting case only the open universe can cross the phantom region. The stability and acceptability of the obtained solution are also investigated.  相似文献   

5.
In this paper anisotropic cosmological models with bulk viscosity and quintessence have been studied. Some exact solutions of Einstein field equations with bulk viscosity and quintessence on the background of anisotropic Bianchi Type I space-time are obtained. The new cosmological models approach to isotropy with evolution of the universe. Physical properties of these cosmological models have also been discussed.  相似文献   

6.
The main purpose of this paper is to explore the solutions of Bianchi type-III cosmological model in Lyra geometry in the background of anisotropic dark energy. The general form of the anisotropy parameter of the expansion for Bianchi type-III space time is obtained in the presence of a single imperfect fluid with a dynamical anisotropic equation of state parameter and a dynamical energy density in Lyra geometry. A special law is assumed for the anisotropy of the fluid with reduces the anisotropy parameter of the expansion to a simple form $\Delta \propto \frac{1}{H^{2}V^{2}}$ . The exact solutions of the field equations, under the assumption on the anisotropy of the fluid, are obtained for exponential and power law volumetric expansion. The isotropy of the fluid, space and expansion are discussed. It is observed that the universe can approach to isotropy monotonically even in the presence of an anisotropic fluid. The anisotropy of the fluid also isotropizes at later times for accelerating models. The expression for the look-back time, proper distance, luminosity distance and angular diameter distance are also derived.  相似文献   

7.
A method is presented to generate exact solutions of the Einstein field equations in Bianchi type V space-times. The energy-momentum tensor is of perfect fluid type. Starting from particular solutions, new classes of solutions are obtained. The geometrical and physical properties of a class of solutions are discussed.  相似文献   

8.
It is shown that it is sufficient to solve a single first order differential equation to determine exact Bianchi type V imperfect fluid solutions of Einstein's field equations. Two exact solutions are presented in this paper. One of these two solutions corresponds to the case when the anisotropic pressure tensor is proportional to the shear tensor. This proportionality, it is shown, is a necessary but not a sufficient condition for the absence of heat flow in a Bianchi type V universe. It is also observed that the presence of heat flow necessarily introduces anisotropy in a Bianchi type V universe.  相似文献   

9.
We provide closed form solutions to the Maxwell equations for the modes associated with the propagation of classical electromagnetic radiation in background Robertson-Walker geometries of any allowed spatial curvature. An incoherent averaging over complete sets of these modes in each spatial geometry is then found to yield the familiar perfect fluid energy-momentum tensor required of the standard Friedmann cosmology.  相似文献   

10.
The general form of the anisotropy parameter of the expansion for Bianchi type-III metric is obtained in the presence of a single diagonal imperfect fluid with a dynamically anisotropic equation of state parameter and a dynamical energy density in general relativity. A special law is assumed for the anisotropy of the fluid which reduces the anisotropy parameter of the expansion to a simple form (D μ H-2V-2{\Delta\propto H^{-2}V^{-2}}, where Δ is the anisotropy parameter, H is the mean Hubble parameter and V is the volume of the universe). The exact solutions of the Einstein field equations, under the assumption on the anisotropy of the fluid, are obtained for exponential and power-law volumetric expansions. The isotropy of the fluid, space and expansion are examined. It is observed that the universe can approach to isotropy monotonically even in the presence of an anisotropic fluid. The anisotropy of the fluid also isotropizes at later times for accelerating models and evolves into the well-known cosmological constant in the model for exponential volumetric expansion.  相似文献   

11.
Within the scope of an anisotropic Bianchi type-V cosmological model we have studied the evolution of the universe. The assumption of a diagonal energy-momentum tensor leads to some severe restriction on the metric functions, which on its part imposes restriction on the components of the energy momentum tensor. This model allows anisotropic matter distribution. Further using the proportionality condition that relates the shear scalar (σ) in the model with the expansion scalar (?) and the variation law of Hubble parameter, connecting Hubble parameter with volume scale. Exact solution to the corresponding equations are obtained. The EoS parameter for dark energy as well as deceleration parameter is found to be the time varying functions. A qualitative picture of the evolution of the universe corresponding to different of its stages is given using the latest observational data.  相似文献   

12.
We consider the asymptotic dynamics of the Einstein-Maxwell field equations for the class of non-tilted Bianchi cosmologies with a barotropic perfect fluid and a pure homogeneous source-free magnetic field, with emphasis on models of Bianchi type VII0, which have not been previously studied. Using the orthonormal frame formalism and Hubble-normalized variables, we show that, as is the case for the previously studied class A magnetic Bianchi models, the magnetic Bianchi VII0 cosmologies also exhibit an oscillatory approach to the initial singularity. However, in contrast to the other magnetic Bianchi models, we rigorously establish that typical magnetic Bianchi VII0 cosmologies exhibit the phenomena of asymptotic self-similarity breaking and Weyl curvature dominance in the late-time regime.  相似文献   

13.
We present (n+1)-dimensional expanding structures in a cosmological background. Due to the expansion of spacetime the throat of wormholes enlarge with time. These solutions are examined in the Einstein’s framework. A general linear relation between diagonal elements of an anisotropic energy-momentum tensor is assumed and the spherically symmetric structures are obtained. Solutions include naked singularity and expanding wormholes in an open universe. The traversibility of wormhole solutions is explored and we find that they are basically traversable. Finally, we consider the corresponding energy-momentum tensor properties and specially take into account the standard energy conditions.  相似文献   

14.
The matter collineation classifications of Kantowski-Sachs, Bianchi types I and III space times are studied according to their degenerate and non-degenerate energy-momentum tensor. When the energy-momentum tensor is degenerate, it is shown that the matter collineations are similar to the Ricci collineations with different constraint equations. Solving the constraint equations we obtain some cosmological models in this case. Interestingly, we have also found the case where the energy-momentum tensor is degenerate but the group of matter collineations is finite dimensional. When the energy-momentum tensor is non-degenerate, the group of matter collineations is finite-dimensional and they admit either four which coincides with isometry group or ten matter collineations in which four ones are isometries and the remaining ones are proper.  相似文献   

15.
We consider a Vaidya-type radiating spacetime in Einstein gravity with the Gauss-Bonnet combination of quadratic curvature terms. Simply generalizing the known static black hole solutions in Einstein-Gauss-Bonnet gravity, we present an exact solution in arbitrary dimensions with the energy-momentum tensor given by a null fluid form. As an application, we derive an evolution equation for the “dark radiation” in the Gauss-Bonnet braneworld.  相似文献   

16.
In this paper we study the Casimir effect for conformally coupled massless scalar fields on background of Static dS4+1 spacetime. We will consider the general plane–symmetric solutions of the gravitational field equations and boundary conditions of the Dirichlet type on the branes. Then we calculate the vacuum energy-momentum tensor in a configuration in which the boundary branes are moving by uniform proper acceleration in static de Sitter background. Static de Sitter space is conformally related to the Rindler space, as a result we can obtain vacuum expectation values of energy-momentum tensor for conformally invariant field in static de Sitter space from the corresponding Rindler counterpart by the conformal transformation.  相似文献   

17.
Subtractive methods (N-wave and adiabatic) which are applicable to the calculation of the energy-momentum tensor of quantum fields in curved space-time are in need of a foundation in terms of renormalizations. In the example of a scalar field in an anisotropic universe of Bianchi type I it is shown that the Pauli-Villars scheme, in which the renormalization is in fact realized separately in each mode, provides such a foundation. The technical difficulty obstructing the explicit regularization of divergent integrals in momentum space is shown. We calculate the polarization of the vacuum of a scalar field with arbitrary coupling to the curvature in a weakly anisotropic universe.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 93–98, July, 1986.  相似文献   

18.
With the use of the equations of motion of massless fields moving in a curved Friedmann-Robertson-Walker universe, we show, in some simple cases, that the energy-momentum tensor of a maximally 3-space symmetric distribution of the fields (i.e., an incoherent averaging over a complete set of modes of the field propagating in a Robertson-Walker background) has the standard perfect fluid form. As far as we know such an explicit demonstration, as well as the establishment of the compatibility of the equations of motion of the gravitational field with such an incoherently averaged source in the standard cosmology, has not previously been presented in the literature. Our results are found to hold for any value of the spatial curvature of the universe.  相似文献   

19.
In a spatially homogeneous and anisotropic Bianchi type-V space-time the consequences of the presence of dynamically anisotropic dark energy and perfect fluid with heat-conduction are studied. We assume that dark energy is minimally interacting with matter and has an equation of state which is modified in a consistent way with the conservation of energy momentum tensor. Exact solutions of Einstein field equations are obtained by taking constant value of deceleration parameter. We find that this assumption is reasonable for the observation of the present day universe. The physical and geometrical properties of the models, the behavior of the anisotropy of dark energy and the thermodynamical relations that govern such solutions are discussed in detail.  相似文献   

20.
We apply the dynamical systems approach to investigate the spatially homogeneous and anisotropic Bianchi type V models for the Palatini version of f(R) gravity. In particular, we examine the existence of equilibrium points along with their exact solutions and stability properties for two different forms of f(R). Moreover, the evolution of shear and spatial curvature by performing the phase space analysis are studied and also the phases of evolution from anisotropic universe to the stable de-Sitter flat universe are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号