首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
I.IntroductionThcobjcctofsubmarincstratasurvcyisforgco1ogicalintcrprctation,inwhichsubmarinccchodataarcuscd.Rightgcologicalintcrprctationisbascdonthedatawithhighsignal-to-noiseratio(S/N)andhighrcsoIution.ThcusualmcthodofimprovingS/Nistocollcctwide-anglcechodatahyasystcmcomposcdofanacousticsourceandahydrophoncsfrcamcrtOwedbchindaprofilerandstackthcdataincommon-dcpth-point(CDP)gathcr,whichcansupprcsssomctypcsofintcrfcrcnce.a..s[1'2].Bcsidcs,combincdmcthodsoffic1dco11cctionandfi1teringmcthods…  相似文献   

2.
用地层剖面仪加一条拖曳水听器阵组成的海底地层测量系统采集海底地层广角回波数据,对广角回波数据进行共深度点叠加得到的叠加剖面可用于地质解释。当海底地层声速有横向变化时,由于波的折射效应的影响,叠加剖面不能真实反映海底下地层构造的情况,应用于地质解释很可能会导致错误的结果。在已知海底地层声速的情况下,用声波方程Kirchhoff积分方法对叠加数据进行正反向两次波场延拓,可消除上伏地层声速横向变化引起下伏地层回波波场的畸变,获得更精确反映海底下地层构造的声波图像。  相似文献   

3.
为了提高全聚焦超声成像的质量和速度,提出了渐进式频率波数域全聚焦超声成像方法(GTFM-FW)。首先通过逐次激励超声相控阵各阵元并全孔径采集回波,得到全矩阵数据;然后通过傅里叶变换将全矩阵数据中的一组或多组对角线数据变换到频率波数域,对各组对角线数据的变换结果进行对齐并叠加;最后利用Stolt变换和二维逆傅里叶变换得到全聚焦成像结果。为了验证算法的有效性,对仿真点目标以及试块进行了详细成像实验。结果表明:本文方法可以通过改变全矩阵数据的使用量来实现成像分辨率与旁瓣干扰间的折中。并且由于采用频率波数域处理,在成像分辨率优于传统全聚焦成像算法的情况下,运算量大大降低。   相似文献   

4.
吕燚  吴文焘  李平 《声学学报》2013,38(4):426-432
为了解决合成发射孔径技术在医学超声成像实现中面临的数据量大及接收通道多的问题,提出一种超声成像系统频率域稀疏性模型的压缩感知成像算法。首先对超声系统频率域稀疏性模型进行了验证;然后根据稀疏性模型利用压缩感知理论对回波信号进行压缩采样,并使用最优化方法完成回波信号重建;最终通过合成发射孔径技术完成超声成像。针对医学成像中常用的点目标及模拟胎儿目标进行成像仿真实验,对重建图像在均方误差、分辨率及成像质量等方面与常规成像结果对比分析。实验结果表明在保证成像质量的同时,仅使用30%原始数据量及50%总接收通道数目可完成成像;频率域稀疏性模型的压缩感知成像算法可以大幅度减少合成发射孔径成像所需数据量及接收通道数,极大地降低了系统复杂度。   相似文献   

5.
超声显微成像技术广泛应用于工业无损检测领域。相较于闭环、半闭环扫描系统硬件复杂、成本高,开环扫描系统结构简单、成本低,但由于无反馈机制会导致步进电机的非线性运动引起图像像素错位畸变。因此,消除非线性运动带来的错位畸变是采用开环扫描系统实现高质量超声成像的关键。该文提出集最大值投影法、最大类间方差法和中心坐标校正法于一体的MIP-Otsu-C3M方法,对开环扫描系统获得的硬币回波数据采用最大值投影法获取初始灰度图像,采用最大类间方差法获取感兴趣区域的B扫描图像边缘像素位置,并采用中心坐标校正法成功消除像素错位,解决了超声C扫描图像畸变问题。对消除错位畸变的回波数据进行飞行时间法和傅里叶变换法图像重建,直接获得了非畸变的三维图像和透视图像。该新颖算法也验证了最大值投影法可拓展至图像畸变校正应用。  相似文献   

6.
为了解现代谱分析技术在风廓线雷达中应用的可行性,通过采用实测的和模拟的风廓线雷达回波信号,对比研究了FFT法与最大熵法的谱分析效果。结果表明:(1)当回波信号比较强时,两者都可以得到较好的谱分析效果;但是当回波信号较弱时,最大熵法分析效果优于FFT法,最大熵法对地杂波具有较好的抑制能力。(2)最大熵谱比较光滑,表明最大熵法对随机白噪声也有一定的抑制作用。(3)最大熵法的递推阶数对谱分析结果有一定影响,最终预测误差准则确定的递推阶数一般偏小,采用15阶的递推阶数进行最大熵法分析取得了较好结果。由于风廓线雷达回波通常都较弱,因此研究结果可望用于改善信号处理效果。  相似文献   

7.
In gradient echo imaging the in-plane susceptibility gradient causes an echo shift which results in signal loss. The loss of signal becomes more severe in gradient echo EPI, due to the low amplitude of the gradient which is applied in the phase-encoding direction during a long echo train. As the readout gradient amplitude is set to be very high in gradient echo EPI, the echo shift in the readout direction is negligible compared to that in the phase-encoding direction. Traditionally, a z-shimming technique has been applied to the phase-encoding direction of gradient echo EPI to restore the lost signal. This technique, however, requires a significant increase of scan time, as is also the case with the through-plane z-shimming technique. A new approach that allows one to restore the lost signal is to acquire additional phase-encoding lines beyond the regular phase-encoding range. The extension of the phase-encoding lines prior to the regular phase-encoding range exploits the delay time for optimum echo time of the BOLD sensitivity. Therefore, scan time is increased only for the extended phase-encoding lines posterior to the regular phase-encoding range. This technique has been confirmed experimentally by imaging human subject's heads at 3T.  相似文献   

8.
Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in printed electronics products’ quality inspection is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, photonic crystal fibre and modified, free-space Michelson interferometer. Possibilities of the technique are demonstrated by analysis of an RF antenna—example of printed electronics products. Measurements were done with submicron axial resolution, offered by UHR-OCT system developed in our laboratory. Such high resolution is necessary due to the thickness of material layers used in printed electronics. In addition to tomography imaging, numerical results were compared with data provided by two commercially available measurement devices: Wyko NT3300 optical profiler and Dektak 8 stylus profiler (both Veeco). Comparison of profile heights and their spatial correlation is presented. Ability for full volumetric reconstruction and accuracy justified with reference measurements prove OCT to be a reliable tool in printed electronics product testing.  相似文献   

9.
The method of nuclear spin-echo amplitude calculation based on the density matrix technique is improved. The Floquet–Lyapunov theorem for a system of the ordinary differential equations with coefficients periodically dependent on time is used to find the solution of the Schrödinger equation for the time-evolution operator which describes behavior of a nuclear spin in the presence of a radiofrequency pulsed magnetic field. NQR spin echo for the case of nuclear spin I?=?1 and NMR spin echo for I?=?1/2 are considered as the simplest illustrations of the approach. The appearance of multiple spin echoes is predicted in the case of strong radiofrequency field.  相似文献   

10.
A new technique is proposed which combines the advantages of phase encoded and multi-slice echo planar imaging (EPI) methods. Its principle is to interleave multiple phase encoded EPI slabs. This approach can provide a larger spatial coverage than multi-slice EPI for the same signal to noise ratio and total imaging time and a shorter minimum imaging time than 3D EPI for the same coverage and repetition time. Other advantages include availability of the steady state image contrasts and potentially lower acoustic noise and RF specific absorption rate compared to the standard multi-slice EPI. A full discussion of its potential as well as in vivo results at 1.5 and 3 Tesla are presented in this paper.  相似文献   

11.
Recent improvements in the parabolic equation method are combined to extend this approach to a larger class of seismo-acoustics problems. The variable rotated parabolic equation [J. Acoust. Soc. Am. 120, 3534-3538 (2006)] handles a sloping fluid-solid interface at the ocean bottom. The single-scattering solution [J. Acoust. Soc. Am. 121, 808-813 (2007)] handles range dependence within elastic sediment layers. When these methods are implemented together, the parabolic equation method can be applied to problems involving variations in bathymetry and the thickness of sediment layers. The accuracy of the approach is demonstrated by comparing with finite-element solutions. The approach is applied to a complex scenario in a realistic environment.  相似文献   

12.
The advantages of event-related functional Magnetic Resonance Imaging (fMRI) and the increasing use of fMRI in cognitive experiments are both driving the development of techniques that allow images sensitive to the blood oxygen level-dependent effect to be acquired at ever-higher temporal resolution. Here, we present a technique based on the use of echo shifting (ES) in conjunction with a multislice (MS) echo planar imaging (EPI) readout, which allows T2*-weighted images to be generated with a repetition time per slice that is less than the echo time (TE). Using this ES-MS-EPI approach, it is shown that images with a TE of 40 ms can be acquired with an acquisition time per slice of only 27 ms. The utility of the MS-ES-EPI sequence is demonstrated in a visual-motor, event-related fMRI study in which nine-slice image volumes are acquired continuously at a rate of 4.1 Hz. The sequence is shown to produce reliable activation associated with both visual stimuli and motor actions.  相似文献   

13.
The multiple-modulation-multiple-echo sequence, previously used for rapid measurement of diffusion, is extended to a method for single shot imaging. Removing the gradient switching requirement during the application of RF pulses by a constant frequency encoding gradient can shorten experiment time for ultrafast imaging. However, having the gradient on during the pulses gives rise to echo shape variations from off-resonance effects, which make the image reconstruction difficult. In this paper, we propose a simple method to deconvolve the echo shape variation from the true one-dimensional image. This method is extended to two-dimensional imaging by adding phase encoding gradients between echoes during the acquisition period to phase encode each echo separately. Slice selection is achieved by a frequency selective pulse at the beginning of the sequence. Imaging speed is mainly limited by the phase encoding gradients' switching times and echo overlap when echo spacing is very short. This technique can produce a single-shot image of sub-millimeter resolution in 5 ms.  相似文献   

14.
In multi-echo imaging sequences like fast spin echo (FSE), the point spread function (PSF) in the phase encoding direction contains significant secondary peaks (sidebands). This is due to discontinuities in adjacent k-space data obtained at different echo times caused by T2 decay, and leads to ghosting and hence reduced image quality. Recently, utilising multiple coils for signal reception has become the standard configuration for MR systems due to the additional flexibility that parallel imaging (PI) methods can provide. PI methods generally obtain more data than is required to reconstruct an image. Here, this redundancy in information is exploited to reduce discontinuity-related ghosting in FSE imaging. Adjacent phase encoded k-space lines are acquired at different echo times alternately in the regions of discontinuity (called ‘feathering’). This moves the resulting ghost artefacts to the edges of the field of view. This property of the ghost then makes them amenable to removal using PI methods. With ‘feathered’ array coil data it is possible to reconstruct data over the region of the discontinuity from both echo times. By combining this data, a significant reduction in ghosting can be achieved. We show this approach to be effective through simulated and acquired MRI data.  相似文献   

15.
We investigate the influence of the source's energy fluctuation on both computational ghost imaging and computational ghost imaging via sparsity constraint,and if the reconstruction quality will decrease with the increase of the source's energy fluctuation.In order to overcome the problem of image degradation,a correction approach against the source's energy fluctuation is proposed by recording the source's fluctuation with a monitor before modulation and correcting the echo signal or the intensity of computed reference light field with the data recorded by the monitor.Both the numerical simulation and experimental results demonstrate that computational ghost imaging via sparsity constraint can be enhanced by correcting the echo signal or the intensity of computed reference light field,while only correcting the echo signal is valid for computational ghost imaging.  相似文献   

16.
Accurate measurement of reversible (R2') and irreversible (R2) transverse relaxation rates plays a key role in various magnetic resonance imaging research and applications. Although optimization of echo spacing for a multiecho pulse sequence measuring a single exponential decay has been investigated, optimization in sequences such as Gradient-Echo Sampling of Free Induction Decay and Echo (GESFIDE), in which two echo trains are simultaneously measured to obtain both R2 and R2', has not been reported. In this work, optimum echo spacings for the GESFIDE sequence are determined to improve the accuracy of measured relaxation parameters. Various relaxation rates and the number of acquired echoes are considered, as well as whether the receiver bandwidth is kept fixed or is varied with echo spacing. In the case of constant receiver bandwidth, results show that the echo train length approximately equal to T2* should be used for each echo train in GESFIDE to minimize uncertainty in R2 or R2'. If the receiver bandwidth is allowed to change with echo spacing in order to maximize the image signal-to-noise ratio, the optimum echo train length will vary, generally increasing with the number of echoes.  相似文献   

17.
Rapid MR imaging techniques either deposit high amounts of radio frequency power or require powerful gradient systems with high slew rates, which might not be available on conventional scanners. QUEST provides a fast imaging method with scan times of the order of hundreds of milliseconds and avoids these problems at the cost of low signal-to-noise ratios (SNR). In this work, QUEST was optimized with regard to image quality and measuring time. With the use of a Hybrid QUEST technique, that refocuses the image echoes several times, a spatial resolution of 1.9 mm x 1.6 mm x 5 mm was achieved. By acquiring both the necessary correction data and the image information in a single echo train, the Hybrid QUEST technique was implemented as a true single-shot measurement with a total scan time of 190 ms. Optimization of the excitation flip angles and the amplitude and phase correction methods for image reconstruction resulted in an improved SNR of 53.7 in the white matter of the human head for a 10 mm slice thickness at 1.5 T. In contrast to echo planar imaging techniques, no image distortions were observed with Hybrid QUEST in anatomic regions with many tissue interfaces.  相似文献   

18.
Present acoustic imaging apparatuses give only a virtual image of the insonified object. Several studies have been conducted in order to pick up the information from such an image, such as holography and computer data processing. These techniques are very involved, and so simpler processing systems have been analysed in our laboratory in order to reconstruct a true image. Our first system used optical processing of the acoustic echo. In this paper, a second, acousto-electronic, system is described, which enables like the first the attainment of very high image rates in the B-scan mode.  相似文献   

19.
This paper presents the first results of an imaging technique that measures the geoacoustic structure of a seafloor in shallow water areas. The devices used were a broadband (100 Hz-6 kHz) acoustic source towed by a ship and a vertical array. Among all the acoustic paths existing in the water column, two are used: the direct one and the seabed-reflected one, the latter being composed of the reflections from the seafloor's surface as well as that from each buried layer. Due to the good time resolution of the signal and to the short range configuration, the reflected signal can be modeled as a sum of contributions coming from image sources relative to the seabed layers. The seabed geometry and the sound speed profile can then be recovered with the detection and localization of these image sources. The map of the image sources is obtained by a function that combines back-propagation of signals and knowledge of the emitted pulse. The thickness and sound-speed of each layer is finally obtained by a position analysis of the image sources. The results obtained by this data-driven algorithm on both at-sea and synthetic data are satisfactory.  相似文献   

20.
Gradient moment nulling techniques for refocussing of spin dephasing resulting from movement during application of magnetic resonance imaging gradients have gained widespread application. These techniques offer advantages over conventional imaging gradients by reducing motion artifacts due to intraview motion, and by recovering signal lost from spin dephasing. This paper presents a simple technique for designing multiecho imaging gradient waveforms that refocus dephasing from the interaction of imaging gradients and multiple derivatives of position. Multiple moments will be compensated at each echo. The method described relies on the fact that the calculation of time moments for nulled moment gradient waveforms is independent of the time origin chosen. Therefore, waveforms used to generate the second echo image for multiple echo sequences with echo times given by TEn = TE1 + (n - 1) * (TE2 - TE1) may also be used for generation of the third and additional echo images. All echoes will refocus the same derivatives of position. Multiecho, multimoment refocussing (MEM-MO-RE) images through the liver in a patient with ampullary adenocarcinoma metastatic to the liver demonstrate the application of the method in clinical scanning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号