首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined magnetizations as a function of temperature and magnetic field in layered perovskite manganites La2−2xSr1+2xMn2O7 single crystals (x=0.313, 0.315, 0.318, 0.320 and 0.350) in order to determine the phase boundary between two ferromagnets (one is an uniaxial ferromagnet whose easy axis is parallel to the c-axis and the other is a planar ferromagnet whose easy axis is within the ab-plane) and following results are obtained: (i) all the present manganites exhibit magnetic transitions from a ferromagnet to a paramagnet at 76, 107, 116, 120 and 125 K for x=0.313, 0.315, 0.318, 0.320 and 0.350, respectively; (ii) for x=0.318, 0.320 and 0.350, the magnetic structure is a planar ferromagnet below Curie temperature; (iii) for x=0.313 and 0.315, the magnetic structure changes from an uniaxial to a planar ferromagnet at 66 and 85 K, respectively. From the results described above we have constructed the magnetic phase diagram of layered perovskite manganite La2−2xSr1+2xMn2O7 (0.313?x?0.350).  相似文献   

2.
X-ray powder diffraction and magnetization measurements were done on the magnetic shape memory alloys Ni2Mn1+xIn1−x. On the basis of the results, the magnetic phase diagram was determined for Ni2Mn1+xIn1−x alloys. Magnetization measurements make clear that the excess Mn atoms, which substitute for In sites, are coupled ferromagnetically to the ferromagnetic manganese sublattices. A magnetic phase diagram of Ni2Mn1+xIn1−x alloys is discussed qualitatively on the basis of the interatomic dependence of the exchange interactions.  相似文献   

3.
The structural and magnetic properties of Nd1−xTbxFe10.5Mo1.5 (x=0x=0, 0.2, 0.4, 0.6, 0.8, 1.0) compounds have been investigated by means of X-ray diffraction and magnetic measurements. All the investigated compounds crystallize in the tetragonal ThMn12-type structure with I4/mmm space group. The lattice parameters a, c and the unit-cell volume V decrease with increasing x. The Curie temperatures TC are almost independent x. There exists a unique spin-reorientation transition for the end compositions of Nd1−xTbxFe10.5Mo1.5 compounds with x=0x=0 and x=1x=1, while two spin-reorientation transitions are observed for x=0.2–0.8x=0.20.8. The room-temperature magnetocrystalline anisotropy of Nd1−xTbxFe10.5Mo1.5 compounds changes from uniaxial to planar with increasing x content. Based on magnetic measurements, a magnetic phase diagram of Nd1−xTbxFe10.5Mo1.5 compounds is constructed. By minimizing the magnetocrystalline anisotropy energy, a theoretical magnetic phase diagram for the Nd1−xTbxFe10.5Mo1.5 system is derived, showing a reasonable agreement with the observations.  相似文献   

4.
Magnetic properties of the Ce2Fe17−xMnx, x=0–2, alloys in magnetic fields up to 40 T are reported. The compounds with x=0.5–1 are helical antiferromagnets and those with 1<x?2 are helical ferromagnets or helical antiferromagnets at low and high T, respectively. Mn ions in the system carry average magnetic moment of 3.0±0.2 μB that couple antiparallelly to the Fe moments. Easy-plane magnetic anisotropy in the Ce2Fe17−xMnx compounds weakens upon substitution of Mn for Fe. The absolute value of the first anisotropy constant in the Ce2Fe17−xMnx helical ferromagnets decreases slower with increasing temperature than that calculated from the third power of the spontaneous magnetization. Noticeable magnetic hysteresis in the Ce2Fe17−xMnx, x=0.5–2, helical magnets over the whole range of magnetic fields reflects mainly irreversible deformation of the helical magnetic structure during the magnetization of the compounds. A contribution from short-range order (SRO) magnetic clusters to the magnetic hysteresis of the helical magnets has been also estimated.  相似文献   

5.
Phase structure and magnetic properties of the as-cast and as-milled/annealed SmCo7−xMox (x=0, 0.1, 0.2, 0.3, 0.4) alloys have been systematically studied. It is found that all the as-cast series alloys are composed of the CaCu5-type and Th2Zn17-type phases. Saturation magnetization of the samples decreases with the Mo content increasing. Intrinsic coercivities (iHc) of no more than 0.06 T are observed in these as-cast samples, due to their rather coarse grain microstructures with an average grain size of 50 μm. The as-milled/annealed SmCo7−xMox powders crystallize in the disordered TbCu7-type (1:7) structure with very fine nanograins, and a minor Co3Mo phase appears in the samples with x=0.1-0.4. High iHc (?0.95 T) are achieved in these samples, with a maximum of 1.26 T located at x=0.2, which can be primarily attributed to strong pinning of the domain wall motion at the nanograin boundaries. The temperature coefficient (β) of the iHc is about −0.22%/°C in the temperature range of 25-400 °C for the as-milled/annealed samples.  相似文献   

6.
7.
8.
In attempt to characterise the magnetic ordering in the whole composition range of the Cd1−xZnxCr2Se4 system, various magnetic measurements were performed on both crystalline and polycrystalline samples with 0?x?1. The magnetic properties of the system are typical of a ferromagnet below x=0.4 and of a complex antiferromagnet one above x=0.6. In this work the intermediate region was carefully studied. The variations of both M(T) and χac at low fields suggest that transitions from ferromagnetic to Gabay–Toulouse ferromagnetic-spin-glass mixed phase at low temperature occur in the range 0.41?x?0.58. The high-temperature susceptibility measurements show that for the whole concentration range the system obeys Curie–Weiss laws. The results can be explained by the coexistence of competing interactions (ferromagnetic between nearest neighbours and antiferromagnetic between higher order neighbours) and disorder due to the random substitution between zinc and cadmium ions in the tetrahedral sites of the spinel lattice. An experimental magnetic phase diagram of the system is established.  相似文献   

9.
The compound ErCu2Ge2 was studied by neutron diffraction. The diffraction diagram of this compound at 170 K agrees with its crystallographic structure. Its diagram at 1.9 K reveals the existence of superlattice lines consistent with a cell doubled in the a and c directions. The erbium magnetic moment (8.0±0.4)μB lies on the c-axis. Crystal field calculations on the Er3+ site give 7.9μB, with easy magnetization axis the c-axis of the crystal. Copper must contribute to the Vml crystal field parameters with a charge equal to 0.6+.  相似文献   

10.
The high-temperature series expansions method applied in the systems Mn1−xCuxCr2S4 in the range 0?x?1. The exchange interactions and the magnetic exchange energies are calculated by using the probability law. The high-temperature series expansions have been applied in the spinel Mn1−xCuxCr2S4 systems, combined with the Padé approximants method, to determine the magnetic phase diagram, i.e. TC versus dilution x. The critical exponent associated with the magnetic susceptibility (γ) is deduced. The obtained value of γ is insensitive to the dilution ratio x and may be compared with other theoretical results based on 3D Heisenberg model.  相似文献   

11.
The study of the structural and magnetic phase diagram of the manganites La1−xAgxMnO3 shows similarity with the La1−xSrxMnO3 series, involving a metallic ferromagnetic domain at relatively high temperature (≈300 K). The Ag-system differs from the Sr-one by a much smaller homogeneity range (x≤1/6) and the absence of charge ordering. But the most important feature of the Ag-manganites deals with the exceptionally high magnetoresistance (−25%) at room temperature under 1.2 T, that appears for the composition x=1/6. The latter is interpreted as the coincidence of the optimal double exchange condition (Mn3+:Mn4+=2) with Tmax=300 K (maximum of the ρ(T) curve in zero field).  相似文献   

12.
Light-induced changes of the hysteresis loops of magnetization and microwave absorption are investigated in low-doped La1−xCaxMnO3 (x<0.2) thin films. The width of the hysteresis loops decreases clearly under illumination with visible or near-infrared light at temperatures below 50 K. The microwave conductivity has a minimum value at magnetic fields corresponding to the magnetization reversal and is shifted towards weaker fields under illumination. These effects show complex nonexponential time evolution and dependence on strength of the magnetic field. The results can be explained by assuming that small ferromagnetic metallic regions exist within the insulating ferromagnetic phase of the sample, and that these regions are expanded by optically induced charge transfer between Jahn–Teller split eg states of neighboring Mn3+ ions. Decrease of the Mn3+ XPS core level spectrum is observed in the samples under illumination with a HeNe laser.  相似文献   

13.
Co3V 2O8 is a spin- 3/2 system on a Kagomé staircase and is known to undergo two magnetic phase transitions between 6 and 11 K. The H-T phase diagram of Co3V 2O8 derived by magnetization measurements on a single crystal is presented. Additionally both ordered magnetic structures were investigated by neutron powder diffraction experiments and solved using Bertaut’s macroscopic theory. For the ferromagnetic phase the magnetic moments of the Co2+ ions were found to be 1.5(3)μB and 2.7(1)μB at 3.5 K along the crystallographic a axis for the (4a) and (8e) sites, respectively. The antiferromagnetic phase exhibits a magnetic cell with a doubled b axis with respect to the nuclear one. The magnetic moments point along the a axis being 1.8(2)μB (4a) and 1.8(1)μB (8e) at 8 K.  相似文献   

14.
Melted alloys of the FexMn0.65−xAl0.35 disordered system, 0.25?x?0.65, were experimentally studied by Mössbauer spectrometry, vibrating sample magnetometry and AC magnetic susceptibility. All the alloys exhibit the BCC structure with a nearly constant lattice parameter (2.92 Å). Mössbauer studies at room temperature (RT) show that in the 0.25 ?x?0.45 range the alloys are paramagnetic (P) while in the 0.50?x?0.65 range, they are ferromagnetic. At 77 K, Mössbauer studies show that the alloy with x=0.25x=0.25 presents weak magnetic character that is consistent with an antiferromagnetic (AF) behavior due to the high Mn content, while those with 0.30?x?0.40 are paramagnetic, and those in the 0.45?x  ?0.65 range are ferromagnetic (F) with a mean field increasing with the Fe content. Hysteresis cycles at RT prove the paramagnetic character of the alloys between x=0.25x=0.25 and 0.40 and the ferromagnetic character for x?0.45x?0.45. Complementary measurements using AC magnetic susceptibility permit a magnetic phase diagram to be proposed, with the P phase for high temperature and all the compositions, the AF phase for low Fe content and at low temperature, the F phase for high Fe content above RT and the spin glass phase for all the compositions and at temperatures lower than 46 K. In addition, the mean field renormalization group (MFRG) method, applied to a random competitive and site dilute Ising model with nearest-neighbor, gives rise to magnetic phase diagram, which fairly agrees with previous experimental one.  相似文献   

15.
Cerium-doped Y1−xCexMnO3 compounds have been prepared in single-phase form for x=0 to 0.10. X-ray diffraction (XRD) patterns could be analyzed by using P63cm space group. Temperature variations of ac susceptibility and magnetization measurements show that these Ce-doped materials exhibit weak ferromagnetic transition. The observed ferromagnetic transition is attributed to the double exchange ferromagnetic interaction between Mn2+ and Mn3+ ions due to electron doping. The MH loops exhibit hysteresis along with linear contribution and were analyzed based on bound magnetic polaron (BMP) model. Increase in saturation magnetization and decrease in BMP concentrations have been observed with increase in Ce doping.  相似文献   

16.
The magnetic properties of the intermetallic compound Dy2CuIn3 have been investigated. Ac and dc-susceptibility measurements indicate an onset of antiferromagnetic ordering at TN=19.5 K and an additional frequency dependent transition at Tds∼9 K. Neutron diffraction studies confirm the ordered transition at 19.5±1 K. The magnetic unit cell can be described by the propagation vector k=(0.25,0.25,0) with the magnetic moment μ=2.63(4)μB/Dy3+ parallel to the c-axis. Nevertheless, neutron diffraction reveals no additional magnetic phase transition around or below 9 K, which suggests that, at lower temperatures, a spin glass state may be formed in coexistence with the antiferromagnetic mode as a result of frustration and the antagonism between ferromagnetic and antiferromagnetic exchange interactions.  相似文献   

17.
In this study, magnetic and magnetocaloric properties of Pr0.68Ca0.32−xSrxMnO3 (x=0, 0.1, 0.18, 0.26 and 0.32) compounds were investigated. X-ray results indicated that all the samples have a single phase of orthorhombic symmetry. The orthorhombic unit cell parameters increase with the increase in Sr content. Large negative magnetic entropy changes (−26.2 J/kg K at 38 K and 5 T for x=0 and −6.5 J/kg K at 83 K and 6 T for x=0.1) were attributed to ultrasharp metamagnetic transitions. The peak value of ΔSm decreased from −4.1 J/kg K for x=0.18 sample to −2.4 J/kg K for x=0.32 at 1 T magnetic field.  相似文献   

18.
The specific heat (C) of bi-layered manganites La2−2xSr1+2xMn2O7 (x=0.3 and 0.5) is investigated for the ground state of low temperature excitations. A T3/2 dependent term in the low temperature specific heat (LTSH) is identified at zero magnetic field and suppressed by magnetic fields for x=0.3 sample, which is consistent with a ferromagnetic metallic ground state. For x=0.5 sample, a T2 term is observed and is consistent with a two-dimensional (2D) antiferromagnetic insulator. However, it is almost independent of magnetic field within the range of measured temperature (0.6-10 K) and magnetic field (6 T).  相似文献   

19.
The heat capacity of the Y3Ni13−xCoxB2 series has been measured from 300 mK to RT. The magnetic ordering phase transitions have been characterized as second-order type and the Tc's determined. The electronic contribution to the low-temperature heat capacity for x=0 yields an electronic constant γ=54 mJ mol K2, which is higher than those of YNi5 and YNi4B, proving experimentally that its density of states at the Fermi surface is larger than in those other compounds. The substitution of Ni by Co increases γ linearly. Electronic band calculations could explain these features.  相似文献   

20.
We synthesized the Mn-doped Mg(In2−xMnx)O4 oxides with 0.03?x?0.55 using a solid-state reaction method. The X-ray diffraction patterns of the samples were in a good agreement with that of a distorted orthorhombic spinel phase. Their lattice parameters and unit-cell volumes decrease with x due to the substitution of the smaller Mn3+ ions to the larger In3+ ions. The undoped MgIn2O4 oxide presents diamagnetic signals for 5 K?T?300 K. The M(H) at T=300 K reveals a fairly negative-sloped linear relationship. Neither magnetic hysteresis nor saturation behavior was observed in this parent sample. For the Mn-doped samples, however, positive magnetization were observed between 5 and 300 K even if the x value is as low as 0.03. The mass susceptibility enhances with Mn content and it reaches the highest value of 1.4×10−3 emu/g Oe (at T=300 K) at x=0.45. Furthermore, the Mn-doped oxides with x=0.06 and 0.2, respectively, exhibit nonlinear magnetization curves and small hysteretic loops in low magnetic fields. Susceptibilities of the Mn-doped samples are much higher than those of MnO2, Mn2O3 oxides, and Mn metals. These results show that the oxides have potential to be magnetic semiconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号