首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we generalize the theory of simultaneous spin-component measurement to an arbitrary SO(2n) algebra. Independent (meter) spin-1/2 particles are coupled to the generators of the corresponding SO(2n) Clifford algebra. Assuming all meter particles are aligned initially in they direction, it is shown that the measurement of the meterx components after system coupling results in a simultaneous measurement of the system SO(2n) operators.  相似文献   

2.
3.
In the present paper, the basic ideas of thestochastic limit of quantum theory are applied to quantum electro-dynamics. This naturally leads to the study of a new type of quantum stochastic calculus on aHilbert module. Our main result is that in the weak coupling limit of a system composed of a free particle (electron, atom,...) interacting, via the minimal coupling, with the quantum electromagnetic field, a new type of quantum noise arises, living on a Hilbert module rather than a Hilbert space. Moreover we prove that the vacuum distribution of the limiting field operator is not Gaussian, as usual, but a nonlinear deformation of the Wigner semi-circle law. A third new object arising from the present theory, is the so-calledinteracting Fock space. A kind of Fock space in which then quanta, in then-particle space, are not independent, but interact. The origin of all these new features is that we do not introduce the dipole approximation, but we keep the exponential response term, coupling the electron to the quantum electromagnetic field. This produces a nonlinear interaction among all the modes of the limit master field (quantum noise) whose explicit expression, that we find, can be considered as a nonlinear generalization of theFermi golden rule.  相似文献   

4.
We develop a group-theoretical approach to the formulation of generalized abelian gauge theories, such as those appearing in string theory and M-theory. We explore several applications of this approach. First, we show that there is an uncertainty relation which obstructs simultaneous measurement of electric and magnetic flux when torsion fluxes are included. Next, we show how to define the Hilbert space of a self-dual field. The Hilbert space is Z2-graded and we show that, in general, self-dual theories (including the RR fields of string theory) have fermionic sectors. We indicate how rational conformal field theories associated to the two-dimensional Gaussian model generalize to (4k + 2)-dimensional conformal field theories. When our ideas are applied to the RR fields of string theory we learn that it is impossible to measure the K-theory class of a RR field. Only the reduction modulo torsion can be measured.  相似文献   

5.
We study the Kähler-Dirac equation which linearizes the laplacian on the space of antisymmetric tensor fields. In flat space-time it is equivalent to the Dirac equation with internal symmetry and on the lattice it reproduces Susskind fermions. The KD equation in curved space-time differs from the Dirac equation by coupling the gravitational field to the internal symmetry generators. This new way of treating fermionic degrees of freedom may lead to a solution of the generation puzzle but is in conflict with the equivalence principle and with Lorentz invariance on the Planck-mass scale.  相似文献   

6.
We study the g-essence model with Yukawa interactions between a scalar field φ and a Dirac field ψ. For the homogeneous, isotropic and flat Friedmann–Robertson–Walker universe filled with the such g-essence, the exact solution of the model is found. Moreover, we reconstruct the corresponding scalar and fermionic potentials which describe the coupled dynamics of the scalar and fermionic fields. It is shown that some particular g-essence models with Yukawa interactions correspond to the usual and generalized Chaplygin gas unified models of dark energy and dark matter. Also we present some scalar–fermionic Dirac–Born–Infeld models corresponding g-essence models with Yukawa interactions which again describe the unified dark energy–dark matter system.  相似文献   

7.
The non-standard Schwinger fermionic representation of the unitary group is studied by using n-fermion operators. One finds that the Schwinger fermionic representation of the U(n) group is not unique when n≥3. In general, based on n-fermion operators, the non-standard Schwinger fermionic representation of the U(n) group can be established in a uniform approach, where all the generators commute with the total number operators. The Schwinger fermionic representation of U(C n m ) group is also discussed.  相似文献   

8.
The spectral theorem for commuting self-adjoint operators along with the associated functional (or operational) calculus is among the most useful and beautiful results of analysis. It is well known that forming a functional calculus for noncommuting self-adjoint operators is far more problematic. The central result of this paper establishes a rich functional calculus for any finite number of noncommuting (i.e. not necessarily commuting) bounded, self-adjoint operators A 1,..., A n and associated continuous Borel probability measures μ 1, ⋯, μ n on [0,1]. Fix A 1,..., A n . Then each choice of an n-tuple of measures determines one of Feynman’s operational calculi acting on a certain Banach algebra of analytic functions even when A 1, ..., A n are just bounded linear operators on a Banach space. The Hilbert space setting along with self-adjointness allows us to extend the operational calculi well beyond the analytic functions. Using results and ideas drawn largely from the proof of our main theorem, we also establish a family of Trotter product type formulas suitable for Feynman’s operational calculi.   相似文献   

9.
We derive the basic canonical brackets amongst the creation and annihilation operators for a two (1 + 1)- dimensional (2D) gauge field theoretic model of an interacting Hodge theory where a U(1) gauge field (Aμ) is coupled with the fermionic Dirac fields (ψ and ψ). In this derivation, we exploit the spin-statistics theorem, normal ordering and the strength of the underlying six infinitesimal continuous symmetries (and the concept of their generators) that are present in the theory. We do not use the definition of the canonical conjugate momenta (corresponding to the basic fields of the theory) anywhere in our whole discussion. Thus, we conjecture that our present approach provides an alternative to the canonical method of quantization for a class of gauge field theories that are physical examples of Hodge theory where the continuous symmetries (and corresponding generators) provide the physical realizations of the de Rham cohomological operators of differential geometry at the algebraic level.  相似文献   

10.
To implement generalized quantum measurement (GQM) one has to extend the original Hilbert space. Generally speaking, the additional dimensions of the ancilla space increase as the number of the operators of the GQM n increases. This paper presents a scheme for deterministically implementing all possible n-operator GQMs on a single atomic qubit by using only one 2-dimensional ancillary atomic qubit repeatedly, which remarkably reduces the complexity of the realistic physical system. Here the qubit is encoded in the internal states of an atom trapped in an optical cavity and single-photon pulses are employed to provide the interaction between qubits. It shows that the scheme can be performed remotely, and thus it is suitable for implementing GQM in a quantum network. What is more, the number of the total ancilla dimensions in our scheme achieves the theoretic low bound.  相似文献   

11.
A new formulation for General Relativity is developed; it is a canonical, global and geometrically well posed formalism in which gravity is described using only variables related to spin structures. It does not require any background metric fixing and it applies to quite general manifolds, i.e. it does not need particular symmetries requirement or global frames. A global Lagrangian framework for Dirac spinors is also provided; conserved quantities and superpotentials are given. The interaction between gravity and spinors is described in a minimal coupling fashion with respect to the new variables and the Hilbert stress tensor of spinor fields is computed, providing the gravitational field generated by spinors. Finally differences and analogies between this formalism and gauge theories are discussed.  相似文献   

12.
This paper deals with the gravi-quantum mechanical interaction on the level of the first quantisation and in the framework of a metric theory of gravitation (no field quantisation). The interaction is introduced by embedding the quantum mechanics of the otherwise unaffected (i.e. free) spin-1/2 particle in the given curved space-time of the 3-flat expanding Robertson-Walker universe. The metric acts thereby as an external field. The corresponding Hilbert space formalism is established in interpreting the generally covariant theory of the Dirac field in the Riemann space in question as the Dirac representation of the spin-1/2 particle in the Schrödinger picture. The evolution operator is then extracted out of the general relativistic Dirac equation, while contractions of the symmetric energy momentum tensor with the tetrad vectors of the reference system lead to the operators of energy, linear momentum and total angular momentum. The temporal behaviour of the corresponding expectation values is calculated.  相似文献   

13.
A formulation of field quantization of bosonic and fermionic fields defined on the disconnected field of p-acid numbers Q p is given. We introduce a canonical quantization procedure and exhibit the properties of the nonlocal operators present in the action. Its relevance to string theory on Q p is also discussed.  相似文献   

14.
The purpose of the simultaneous measurement of noncommuting quantum observables can be viewed as the joint estimation of parameters of the density operator of the quantum system. Joint estimation involves the application of a multiply parameterized operator-valued measure. An example related to the simultaneous estimation of the position and velocity of a particle is given. Conceptual difficulties attending simultaneous measurement of noncommuting observables are avoided by this formation.  相似文献   

15.
In coupling gravity with the quantum field theory, unitary transformations, depending on space-time-points, were considered and derivatives were introduced, which imply a nonintegrable parallel transport of the state vectors of Hilbert space [1]. The Dirac equation, built with these generalized derivatives, is quantized in a prescribed classical gravitational field. The quantization can be performed in complete analogy to the usual procedure in Minkowski space, but the quantum state vector becomes path dependent. In carrying out the quantization, two two-component classical spinor fields necessarily occur, which obey Weyl's equation. The considered quantized Dirac equations are also picture-covariant, that is they have the same from in each physical picture, especially in the Heisenberg picture and the Schrödinger picture.  相似文献   

16.
We present quantum holonomy theory, which is a non‐perturbative theory of quantum gravity coupled to fermionic degrees of freedom. The theory is based on a ‐algebra that involves holonomy‐diffeo‐morphisms on a 3‐dimensional manifold and which encodes the canonical commutation relations of canonical quantum gravity formulated in terms of Ashtekar variables. Employing a Dirac type operator on the configuration space of Ashtekar connections we obtain a semi‐classical state and a kinematical Hilbert space via its GNS construction. We use the Dirac type operator, which provides a metric structure over the space of Ashtekar connections, to define a scalar curvature operator, from which we obtain a candidate for a Hamilton operator. We show that the classical Hamilton constraint of general relativity emerges from this in a semi‐classical limit and we then compute the operator constraint algebra. Also, we find states in the kinematical Hilbert space on which the expectation value of the Dirac type operator gives the Dirac Hamiltonian in a semi‐classical limit and thus provides a connection to fermionic quantum field theory. Finally, an almost‐commutative algebra emerges from the holonomy‐diffeomorphism algebra in the same limit.  相似文献   

17.
In this paper we consider the most general least-order derivative theory of gravity in which not only curvature but also torsion is explicitly present in the Lagrangian, and where all independent fields have their own coupling constant: we will apply this theory to the case of ELKO fields, which is the acronym of the German Eigenspinoren des LadungsKonjugationsOperators designating eigenspinors of the charge conjugation operator, and thus they are a Majorana-like special type of spinors; and to the Dirac fields, the most general type of spinors. We shall see that because torsion has a coupling constant that is still undetermined, the ELKO and Dirac field equations are endowed with self-interactions whose coupling constant is undetermined: we discuss different applications according to the value of the coupling constants and the different properties that consequently follow. We highlight that in this approach, the ELKO and Dirac field’s self-interactions depend on the coupling constant as a parameter that may even make these non-linearities manifest at subatomic scales.  相似文献   

18.
We have investigated the spectral density of shot noise for an ultra-small quantum dot(QD) system in the Coulomb blockade regime when irradiated with microwave fields (MWFs) by employing a nonequilibrium Green’s function technique. The shot noise is sensitive to Coulomb interaction, and the photon-assisted Coulomb blockade behaviour strongly modifies the mesoscopic transport. We have calculated the first and second derivatives of shot noise in the strong and weak coupling regimes to compare the theoretical results with existing experimental results. In the strong coupling regime, the first and second derivatives of shot noise display Fano type peak-valley structures around the charging channel 2E c due to Coulomb interaction. When the magnitudes of the MWFs are sufficiently large, the system displays channel blockade due to photon irradiation. The photon-assisted and Coulomb blockade steps in the noise — as well as the resonant behaviour in the differential noise — are smeared by increasing temperature. The Coulomb interaction suppresses the shot noise, but the ac fields can either suppress the shot noise(balanced case) or enhance the shot noise(unbalanced case). The suppression of shot noise caused by ac fields in the balanced case is greater than that caused by Coulomb interaction in our system. Super-Poissonian shot noise may be induced due to the compound effects of strong Coulomb interaction and photon absorption-emission processes.  相似文献   

19.
Creation of fermionic particles by a time-dependent electric field and a space-dependent magnetic field is studied with the Bogoulibov transformation method. Exact analytic solutions of the Dirac equation are obtained in terms of the Whittaker functions and the particle creation number density depending on the electric and magnetic fields is determined.  相似文献   

20.
The simultaneous interaction of three fundamental fields is illustrated in Einstein Cartan Evans (ECE) theory with reference to the effect of gravitation on the inverse Faraday effect. The three-field interaction in this case is that of the fermionic, electromagnetic and gravitational fields. The interaction of the first two is developed in a well-defined semi-classical approximation of the ECE wave equation and the effect of gravitation incorporated through the index reduced canonical energy momentum density T. The exercise is repeated using the ECE wave equations and a general rule developed for the effect of gravitation on the fermionic, electromagnetic weak and strong fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号