首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
A new method for cancelling background noise from running speech was used to study voice production during realistic environmental noise exposure. Normal subjects, 12 women and 11 men, read a text in five conditions: quiet, soft continuous noise (75 dBA to 70 dBA), day-care babble (74 dBA), disco (87 dBA), and loud continuous noise (78 dBA to 85 dBA). The noise was presented over loudspeakers and then removed from the recordings in an off-line processing operation. The voice signals were analyzed acoustically with an automatic phonetograph and perceptually by four expert listeners. Subjective data were collected after each vocal loading task. The perceptual parameters press, instability, and roughness increased significantly as an effect of speaking loudly over noise, whereas vocal fry decreased. Having to make oneself heard over noise resulted in higher SPL and F0, as expected, and in higher phonation time. The total reading time was slightly longer in continuous noise than in intermittent noise. The women had 4 dB lower voice SPL overall and increased their phonation time more in noise than did the men. Subjectively, women reported less success making themselves heard and higher effort. The results support the contention that female voices are more vulnerable to vocal loading in background noise.  相似文献   

2.
Investigations into vocal doses and parameters were carried out on 40 primary school teachers (36 females and 4 males) in six schools in Italy, divided into two groups of three, A and B, on the basis of the type of building and the mid-frequency reverberation time in the classrooms, which was 1.13 and 0.79 s, respectively. A total of 73 working-day samples were collected (66 for females and 7 for males), from which 54 traditional lessons were analyzed separately. The average value over the working days of the mean sound pressure level of the voiced speech at 1 m from the teacher's mouth was 62.1 dB for the females and 57.7 dB for the males, while the voicing time percentage was 25.9 and 25.1 %, respectively. Even though the vocal doses and parameters did not differ for the two school groups, the differences in the subjective scores were significant, with enhanced scores in group B. A 0.72 dB increase in speech level per 1 dB increase in background noise level, L(A90), was found during traditional lessons, as well as an increase in the mean value of the fundamental frequency with an increase in L(A90), at a rate of 1.0 Hz/dB.  相似文献   

3.
This study investigated the relation of symptoms of vocal fatigue to acoustic variables reflecting type of voice production and the effects of vocal loading. Seventy-nine female primary school teachers volunteered as subjects. Before and after a working day, (1) a 1-minute text reading sample was recorded at habitual loudness and loudly (as in large classroom), (2) a prolonged phonation on [a:] was recorded at habitual speaking pitch and loudness, and (3) a questionnaire about voice quality, ease, or difficulty of phonation and tiredness of throat was completed. The samples were analyzed for average fundamental frequency (F0), sound pressure level (SPL), and phonation type reflecting alpha ratio (SPL [1-5 kHz]-SPL [50 Hz-1 kHz]). The vowel samples were additionally analyzed for perturbation (jitter and shimmer). After a working day, F0, SPL, and alpha ratio were higher, jitter and shimmer values were lower, and more tiredness of throat was reported. The average levels of the acoustic parameters did not correlate with the symptoms. Increase in jitter and mean F0 in loud reading correlated with tiredness of throat. The results seem to suggest that, at least among experienced vocal professionals, voice production type had little relevance from the point of view of vocal fatigue reported. Differences in the acoustic parameters after a vocally loading working day mainly seem to reflect increased muscle activity as a consequence of vocal loading.  相似文献   

4.
Talkers adjust their vocal effort to communicate at different distances, aiming to compensate for the sound propagation losses. The present paper studies the influence of four acoustically different rooms on the speech produced by 13 male talkers addressing a listener at four distances. Talkers raised their vocal intensity by between 1.3 and 2.2 dB per double distance to the listener and lowered it as a linear function of the quantity "room gain" at a rate of -3.6 dB/dB. There were also significant variations in the mean fundamental frequency, both across distance (3.8 Hz per double distance) and among environments (4.3 Hz), and in the long-term standard deviation of the fundamental frequency among rooms (4 Hz). In the most uncomfortable rooms to speak in, talkers prolonged the voiced segments of the speech they produced, either as a side-effect of increased vocal intensity or in order to compensate for a decrease in speech intelligibility.  相似文献   

5.
A phonetogram is a graph showing the sound pressure level (SPL) of softest and loudest phonation over the entire fundamental frequency range of a voice. A physiological interpretation of a phonetogram is facilitated if the SPL is measured with a flat frequency curve and if the vowel /a/ is used. It was found that in soft phonation, the SPL is mainly dependent on the amplitude of the fundamental, while in loud phonation, the SPL is mainly determined by overtones. The short-term SPL variation, i.e., the level variation within a tone, was about 5 dB in soft phonation and close to 2 dB in loud phonation. For two normal voices the long-term SPL variation, calculated as the mean standard deviation of SPL for day-to-day variation, was found to be between 2.4 and 3.4 dB in soft and loud phonation. Speakers who raise their loudness of phonation also tend to raise their mean voice fundamental frequency. Measures obtained from speaking at various voice levels were combined so that typical pathways could be introduced into the phonetogram. The average slope of these pathways was 0.3–0.5 st/dB for healthy subjects. Averaged phonetograms for male singers and male nonsingers did not differ significantly, but averaged phonetograms for female singers and female nonsingers did, in that the upper contour was higher for the female singers. Averaged phonetograms for female patients with non-organic dysphonia showed significantly lower SPL values in loudest phonation as compared to healthy female subjects, while no corresponding difference was seen for males in this regard. With respect to the SPL values for softest phonation, male dysphonic patients showed significantly higher SPL values than healthy male subjects, while no corresponding difference was seen in female subjects. The subglottal pressure mirrored these phonetogram differences between healthy and pathological voices. The averaged phonetograms of female patients after voice therapy showed an increased similarity with those of normal voices. For the male patients the averaged phonetogram did not change significantly after therapy.  相似文献   

6.
Ten vocally untrained female university students vocalized /a:/ at five given pitches within the average female speaking range (196, 220, 262, 330, and 396 Hz) as softly as possible (pianissimo) and as loudly as musically acceptable (fortissimo). To study the repeatability of voice range profile (sound level) measurement, the procedure was repeated 10 times in each of the five sample sessions during the day, in connection with vocal loading that included five oral readings (45 min each), 15-min pauses, and a lunch break (45 min). A sound level meter specially designed for voice range profile measurement was used. The effect of the loading was seen on the mean sound level changes and intraindividual variation on SDs. The difference between the first phonation and best performance indicates significance of the repetition of the measurement. The sound level averaged across the pitches rose significantly during loading. The intraindividual SD varied between 3 and 4 dBA according to pitch and loudness, and the sound level difference between the first phonation and best performance was 5 dBA in pianissimo and 7 dBA in fortissimo  相似文献   

7.
It can be difficult for the voice clinician to observe or measure how a patient uses his voice in a noisy environment. We consider here a novel method for obtaining this information in the laboratory. Worksite noise and filtered white noise were reproduced over high-fidelity loudspeakers. In this noise, 11 subjects read an instructional text of 1.5 to 2 minutes duration, as if addressing a group of people. Using channel estimation techniques, the site noise was suppressed from the recording, and the voice signal alone was recovered. The attainable noise rejection is limited only by the precision of the experimental setup, which includes the need for the subject to remain still so as not to perturb the estimated acoustic channel. This feasibility study, with 7 female and 4 male subjects, showed that small displacements of the speaker's body, even breathing, impose a practical limit on the attainable noise rejection. The noise rejection was typically 30 dB and maximally 40 dB down over the entire voice spectrum. Recordings thus processed were clean enough to permit voice analysis with the long-time average spectrum and the computerized phonetogram. The effects of site noise on voice sound pressure level, fundamental frequency, long-term average spectrum centroid, phonetogram area, and phonation time were much as expected, but with some interesting differences between females and males.  相似文献   

8.
Thyroplasty type I is one of several surgical treatments in which improving the voice of unilateral vocal fold paralysis is the ultimate objective. The goal of the surgery is the medialization of the paralyzed vocal fold. The purpose of this study is to evaluate the effectiveness of thyroplasty type I through acoustical analysis, aerodynamic measures, and quantitative videostroboscopic measurements. We report on 20 patients with unilateral vocal cord paralysis who underwent thyroplasty type I. We performed preoperative and postoperative video image analysis (normalized glottal gap area) and computer-assisted voice analysis (fundamental frequency, jitter, shimmer, noise-to-harmonic ratio, mean phonation time, mean flow rate, mean subglottic pressure) in all patients. The glottal gap was significantly reduced after thyroplasty type I. Postoperative voice quality was characterized by an improved pitch and amplitude pertubation (jitter and shimmer), phonation time (mean phonation time), and subglottic pressure (mean subglottic pressure). Thyroplasty type I is an effective method for regaining glottal closure and vocal function.  相似文献   

9.
The overall slope of long-term-average spectrum (LTAS) decreases if vocal loudness increases. Therefore, changes of vocal loudness also affects the alpha measure, defined as the ratio of spectrum intensity above and below 1000 Hz. The effect on alpha of loudness variation was analyzed in 15 male and 16 female voices reading a text at different degrees of vocal loudness. The mean range of equivalent sound level (L(eq)) amounted to about 28 dB and the mean range of alpha to 19.0 and 11.7 dB for the female and male subjects. The L(eq) vs. alpha relationship could be approximated with a quadratic function, or by a linear equation, if softest phonation was excluded. Using such equations alpha was computed for all values of L(eq) observed for each subject and compared with observed values. The maximum and the mean absolute errors were 2.4 dB and between 0.1 and 0.6 dB. When softest phonation was disregarded and linear equations were used, the maximum error was less than 2 dB and the mean absolute errors were between 0.2 and 0.7 dB. The strong correlation between L(eq) and alpha indicates that for a voice L(eq) can be used for predicting alpha.  相似文献   

10.
Vocal warm-up is thought to optimize singing performance. We compared effects of short-term, submaximal, vocal warm-up exercise with those of vocal rest on the soprano voice (n = 10, ages 19-21 years). Dependent variables were the minimum subglottic air pressure required for vocal fold oscillation to occur (phonation threshold pressure, Pth), and the maximum and minimum phonation fundamental frequency. Warm-up increased Pth for high pitch phonation (p = 0.033), but not for comfortable (p = 0.297) or low (p = 0.087) pitch phonation. No significant difference in the maximum phonation frequency (p = 0.193) or minimum frequency (p = 0.222) was observed. An elevated Pth at controlled high pitch, but an unchanging maximum and minimum frequency production suggests that short-term vocal exercise may increase the viscosity of the vocal fold and thus serve to stabilize the high voice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号