首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为提升聚合物太阳能电池的光电转换效率,在有源层中掺杂PbSe量子点,研究对电池性能的影响。首先采用热化学法制备PbSe量子点,通过改变油酸的添加量及反应时间,调控PbSe量子点的尺寸及结晶性。通过透射电子显微镜和X射线衍射,对量子点进行表征,确定最佳反应条件。然后将不同质量分数的PbSe量子点掺杂至结构为ITO/ZnO/PTB7∶PC_(71)BM/MoO_3/Ag的聚合物太阳能电池中,通过J-V性能测试和紫外吸收光谱测试,分析了PbSe量子点对电池的影响机理。实验结果表明,当PbO与OA的量比为1∶2、反应时间为3 min时,可得到尺寸均匀分布在3~7 nm之间、结晶性较好的量子点,掺杂量子点质量分数为3%时,短路电流密度提升了8.37%,光电转换效率提升了37.41%,有效提升了聚合物太阳能电池的性能。  相似文献   

2.
硒化铅(PbSe)量子点具有宽红外光谱调控范围、高荧光量子产率和可溶液加工等特点,成为一类重要的红外材料体系。与广泛研究的PbS量子点相比,PbSe量子点在空气中容易氧化,从而严重破坏其光电特性,制约了其应用的发展。壳层的包覆是有效提升PbSe量子点光学特性和化学稳定性的策略之一,是推动PbSe量子点应用发展的材料研究方向。本文综述了PbSe核壳量子点的合成及其在光电探测、太阳能电池、激光器和光催化等领域的应用研究进展,希望能够为国内研究者开展相关研究提供参考。  相似文献   

3.
考虑了PbSe量子点介电限域效应对激子的影响,引入了修正因子,提出了一种新的量子点禁带宽度的计算模型.与实验数据比较,两者具有良好的一致性.尤其是在小尺寸量子点的情况下,修正后的模型与实验值表现出更好的一致性.通过调整受限势垒的大小,分析不同溶剂条件下PbSe禁带宽度的计算模型,说明采用的修正模型对溶剂的变化是不敏感的,与实验的结论是一致的.  相似文献   

4.
制备了3.6,5.1和6.0 nm三种尺寸的胶体PbSe量子点,并对其光学特性进行实验研究。在室温条件下,实验发现小尺寸胶体PbSe量子点的光致发光光谱随温度升高发生红移; 大尺寸胶体PbSe量子点的光致发光光谱随温度升高发生蓝移。以PbSe量子点温度依赖的光致发光光谱特性为基础,提出一种新型的集成电路芯片温度检测方法。这种新型的温度检测方法是将胶体PbSe量子点沉积在集成电路板表面,使用激光器发射出平行激光束,使芯片表面的胶体PbSe量子点层光致发光,通过红外光谱仪接收光致发光光谱,实现温度的检测;利用图像采集系统对芯片表面特定微小区域成像,实现微米尺度区域的温度检测。实验结果表明,测量精度为±3 ℃,其相对误差不大于5%。  相似文献   

5.
许周速  程成  马德伟 《光学学报》2012,32(9):916002-186
采用高温熔融-热处理法,以ZnSe作为PbSe量子点的硒源,成功制备了较高浓度的PbSe量子点硅酸盐玻璃。透射电子显微镜(TEM)测试表明,量子点在玻璃基质中的体积比高达2%~4%,高于采用Se作为硒源时的掺杂体积比。X射线衍射(XRD)测试表明,PbSe量子点呈立方晶体结构。光致发光(PL)光谱测试表明,量子点有强烈的荧光发射,发光波长半峰全宽(FWHM)覆盖1400~2600nm,其PL峰值强度和FWHM均大于以Se为硒源时的情形。以ZnSe代替Se作为PbSe量子点的硒源,可有效避免Se组分的高温挥发,同时,残余Zn形成的ZnO有利于玻璃中PbSe量子点的析晶,从而提高了PbSe量子点在玻璃中的含量。该PbSe量子点玻璃,可用来进一步制备成超带宽、高增益的红外光纤放大器。  相似文献   

6.
《光学学报》2011,(2):187-193
量子点掺杂玻璃是当前新型光通信材料研究的一个热点.用熔融法成功制备了PbSe量子点钠硼铝硅酸盐玻璃.用X射线衍射仪和透射电镜分析了玻璃中PbSe量子点的结晶、尺寸以及分布情况,并用紫外可见近红外分光光度仪和荧光光谱仪分析了PbSe量子点玻璃的吸收谱和荧光发射谱.结果表明,当热处理温度低于500℃时,玻璃没有荧光辐射.当...  相似文献   

7.
PbSe量子点(PbSe-QDs)是红外波段的典型纳米材料,其具有大的玻尔半径、小的体材料禁带宽度(玻尔半径是46 nm,体材料禁带宽度是0.28 eV),因此,在近红外区域,PbSe-QDs具有强大的尺寸受限效应和较高的量子产出率。本文对不同尺寸的PbSe量子点的荧光光谱特性进行了研究,提出了一种通过调节PbSe量子点的量子尺寸匹配气体吸收光谱的方法。采用配位溶剂的方法制备了尺寸为4.6和6.1 nm的PbSe量子点,将该PbSe量子点沉积到GaN发光芯片上并经过紫外光照处理和固化后制成了光致发光的近红外光源,其中4.6 nm的PbSe-QDs的沉积厚度为671.5 μm,而6.1 nm的PbSe-QDs的沉积厚度为48 μm。将制成的近红外光源应用到C2H2气体和NH3气体的检测实验中,实验结果表明,通过改变PbSe量子点的尺寸可以调节光源光致发光峰的位置,从而覆盖目标气体在近红外波段的吸收谱线。4.6 nm的光源发射光谱包含了1 500~1 550 nm之间的C2H2气体的全部的吸收谱;6.1 nm的光源发射光谱包含了1 900~2 060 nm之间的NH3气体的全部的吸收谱。这种利用PbSe量子点尺寸的可调性匹配对应气体吸收谱的方法是可行和有效的,具有广阔的应用前景。  相似文献   

8.
通过本体聚合法,制备出以聚甲基丙烯酸甲酯(PMMA)为基底的PbSe量子点光纤材料PbSe/PMMA.用透射电镜(TEM)观测了PMMA中PbSe量子点的形貌特征,用紫外可见近红外分光光度仪和荧光光谱仪分析了吸收谱和荧光发射(PL)谱.结果表明,PbSe/PMMA材料中生成的PbSe量子点为近似球形、边界明晰、分布均匀...  相似文献   

9.
掺杂PbSe/PVA量子点的光致聚合物全息特性   总被引:1,自引:0,他引:1  
通过原位合成法以聚乙烯醇辅助合成了6.5nm、10nm和15nm的PbSe量子点,研究了掺杂PbSe量子点的光致聚合物的全息特性.将三种尺寸的PbSe量子点按不同浓度分别掺入光致聚合物中,制成无机-有机复合型光致聚合物膜,并对其全息性能进行研究.复合聚合物膜的UV-Vis吸收光谱表明掺入的PbSe量子点并未与聚合物中的有机组分发生化学反应.采用氩氪离子激光器输出的647nm红光研究了复合聚合物膜的透过率和全息记录光栅的布喇格偏移与衍射效率.透过率曲线表明PbSe量子点在复合聚合物膜中分散良好,膜表面均匀.由于PbSe量子点在聚合物链中起支撑作用,复合聚合物膜在全息记录过程中不易发生形变,从而增加了聚合物膜的抗缩皱能力.衍射效率曲线表明掺入PbSe量子点的复合聚合物膜的衍射效率比未掺杂的有所提高.此外,体系存在一个最优值,当掺入平均粒径为10nm且浓度为3.6×10-6 mol/L的PbSe量子点时,样品的透过率达到84%,衍射效率从67.2%提升到89.7%,缩皱率降低到0.8%,极大提高了材料的全息性能.  相似文献   

10.
程成  袁芳 《光学学报》2014,(5):165-171
在PbSe/UV胶量子点光纤环形腔激光器实验的基础上,通过建立并数值求解粒子数速率方程和光功率传播方程等,对1550nm的激光输出特性进行了数值模拟。计算的抽运阈值功率、单/多模激光输出功率随抽运功率的变化、合适的PbSe掺杂浓度、单模激光功率随输出耦合比的变化等,与实验结果基本吻合。通过对PbSe量子点光纤中激光功率分布的研究,给出了粒子数密度的反转条件:N2/N1≥0.45,该条件可由1550nm波长处粒子数反转的吸收截面与辐射截面之比得到。研究了掺杂浓度对激光功率的影响,给出了合适的掺杂浓度范围。  相似文献   

11.
李红博  尹坤 《中国光学》2017,10(5):555-567
近年来,量子点在结构可控、光谱调节和光学稳定方面的研究进展,表明基于量子点的聚光器件表现出优于基于传统有机染料分子的光输出性能。量子点聚光器成为目前量子点研究领域的新方向。量子点在宏量制备和绿色制备方面的深入研究,使得量子点的制造成本逐步降低,基于量子点的聚光器具有光电转换效率和成本上的优势。本文综述了量子点聚光器的研究进展,主要包括荧光型聚光器的优点、聚光器对量子点光学性质的要求、器件制备的工艺和器件的性能表征方法。重点阐述了量子点的太阳光吸收能力、荧光量子产率和重吸收等关键因素对聚光器件性能的影响,同时介绍了该领域目前最新的研究方向,展望了廉价太阳能窗户在未来城镇建筑上的潜在应用。  相似文献   

12.
提出了采用环境友好型InP/ZnS核壳结构量子点材料制备匹配蓝光Micro-LED阵列的量子点色转换层以实现Micro-LED阵列器件全彩化的技术方案。通过采用倒置式量子点色转换层方案,实现了InP/ZnS量子点材料和Micro-LED阵列的非直接接触,从而可以缓解LED中热量聚集导致的量子点材料发光主波长偏移、半峰宽展宽以及发光效率衰减等问题。量子点色转换层中内嵌PDMS聚合物柔性膜层,可以消除咖啡环效应,同时,色转换层中内嵌飞秒激光图案化处理的500 nm长波通滤光膜层,可以抑制蓝光从非蓝色像素单元出射。最后,实验制备了像素单元中心间距90μm的16×16 InP/ZnS量子点色转换层。该设计可以实现基于蓝光Micro-LED阵列的全彩色Micro-LED显示器件的制备,并且该制备方法可以降低全彩色Micro-LED阵列显示器件的制备成本。  相似文献   

13.
近红外量子点具有独特的光学性质,如荧光量子产率高,荧光寿命长,荧光发射波长可调,半峰宽窄且斯托克斯位移较大,耐光漂白能力强等, 及“近红外生物窗口”的优势,使它们在生物荧光标记、太阳能电池、量子化计算、光催化、化学分析、食品检测及活体成像等领域具有巨大的潜在应用价值。目前对近红外量子点的发光机理研究还不够完善,针对国内外的研究现状,重点对核/壳结构的量子点(CdTe/CdSe,CdSe/CdTe/ZnSe等)、三元量子点(Cu-In-Se,CuInS2等)和掺杂型量子点(Cu∶InP等)三种不同类型近红外量子点的发光机理进行了综述。其中,Type-Ⅱ型核/壳结构量子点的发光机理多为带间复合发光,三元量子点以本征缺陷型发光为主,掺杂型量子点多为杂质缺陷型发光。探讨了近红外量子点发光原理存在的问题及发展的方向。对近红外量子点的发光机理进行系统地研究不仅有助于我们理解近红外量子点的发光性质,而且对完善相似高品质量子点的合成方法具有重要意义。  相似文献   

14.
超声法制备碳量子点过程简单,成本低廉,不易产生二次污染,应用前景广泛。为优化超声法制备碳量子点的各工艺参数,制备了关键工艺参数不同的碳量子点样品,测试其发射与激发光谱,分析了量子点浓度,溶剂种类,辅助剂种类、浓度,超声功率、时间等参数对碳量子点发光性能影响。结果表明超声法制备的碳量子点具有激发光波长依赖性,发射峰位置随激发波长的变化而发生明显改变;碳量子点浓度增加,发光强度由于非辐射能量传递和团聚作用,先增大后减小;由于溶剂效应,碳量子点在乙醇中比在水中发光强度更强,波长更短,且浓度越大时波峰移动越明显;相比盐酸,以NaOH为辅助剂制备的碳量子点表面钝化程度高,发光强度强;增加辅助剂NaOH浓度可提高量子点表面钝化程度,增大发光强度;同等时间下增加超声功率或同等功率下适量增加超声时间,可制备更多的碳量子点样品,但超声时间过长,碳量子点容易发生团聚猝灭现象。以上影响因素分析为超声法制备碳量子点的工艺参数优化提供了理论基础,有利于碳量子点大规模低成本的生产应用。  相似文献   

15.
介绍了聚光光伏系统的发展历史和研究现状。对聚光光伏系统中的主件一聚光器和光伏电池进行了详细分类,给出了它们的特点和主要参数。描述了国外一些厂家为提高光伏系统效率并降低成本而研制的太阳跟踪系统。总结出聚光光伏系统的发展趋势,主要是指高倍聚光器+跟踪系统和低倍大角度聚光器+分光元件+多节电池等。最后就目前状况提出了聚光光伏系统商业化还需要解决的问题。  相似文献   

16.
The luminescence of the CdTe quantum dots deposited on glass substrate and introduced into the porous silicon oxide matrix is investigated. The experimental results on the photoluminescence with one- and two-photon excitation and cathodoluminescence indicate that the quantum dots introduced into the matrix retain the luminescence properties. The coefficient of the two-photon absorption of the CdTe quantum dots on the glass substrate is determined.  相似文献   

17.
基于硅量子点(Si-QDs)的全硅叠层太阳电池被认为是最有潜质的高效太阳电池之一。目前所报道的硅量子点薄膜存在硅量子点数密度低、缺陷多等问题,限制了硅量子点太阳电池的光电转换效率。微波退火(microwave annealing, MWA)被认为是一种有益于制备纳米结构材料的方法。微波退火的非热效应可以降低形核能,改善薄膜的微结构和光电性能。因此,采用磁控共溅射技术并结合微波退火工艺,在不同的脉冲功率下制备了含硅量子点SiCx薄膜;采用掠入射X射线衍射(GIXRD)、拉曼(Raman)光谱、紫外-可见-近红外分光光度计和光致发光(PL)光谱表征薄膜的物相结构及光谱特性;研究不同脉冲功率对硅量子点数密度和性能的影响,进而改进磁控共溅射工艺,制备硅量子点数密度较高和性能良好的薄膜。样品的GIXRD谱和Raman谱均显示其中存在硅量子点,其强度先增大后减小;通过谢乐(Scherrer)公式估算出硅量子点尺寸呈现先增大后减小的规律,脉冲功率为80 W时尺寸达到最大(8.0 nm)。在Raman光谱中还观察到中心位于511 cm-1处出现硅量子点Si-Si横向光学振动模式的拉曼峰,其强度也呈现先增大后减小的趋势;对拉曼光谱做最佳高斯(Gauss)分峰拟合,得出薄膜的晶化率均高于62.58%,脉冲功率为80 W时制备的薄膜具有最高的晶化率(79.29%)。上述分析表明薄膜中均有硅量子点的形成,且数量先增加后减小,脉冲功率为80 W时硅量子点数量最多。通过测量样品的透射率T、反射率R等光学参数,利用Tauc公式估算出薄膜的光学带隙,发现带隙值随溅射功率的增加先减小后增大,在脉冲功率为80 W时最小(1.72 eV)。硅量子点尺寸与光学带隙成反比,说明薄膜中的硅量子点具有良好的量子尺寸效应。通过PL光谱分析样品的发光特性,对其做最佳高斯拟合,发现样品中均有6个发光峰。结合Raman光谱的分析结果,可以得出波长位于463~624 nm的发光峰源于硅量子点的作用;而波长位于408和430 nm的发光峰则源于薄膜内部的缺陷态,峰位没有偏移,但强度有变化。根据发光峰对应的波长可计算其能带分布,从而确定缺陷态类型:408 nm的发光峰归因于≡Si°→Ev电子辐射跃迁,430 nm的发光峰则归因于≡Si°→≡Si-Si≡的缺陷态发光。还研究了硅量子点的尺寸对发光峰移动的影响。结果表明,随硅量子点尺寸变小(大),发光峰蓝移(红移)。综上,溅射功率为80 W时制备的含硅量子点SiCx薄膜性能最佳。研究结果为硅量子点太阳电池的后续研究奠定了基础。  相似文献   

18.
A simple and general method has been proposed for preparing strong violet emitting CdS quantum dots, in which a ligand exchange strategy was applied to surface passivation and functionalization with good reproducibility. The resulting quantum dots showed a visible violet luminescence with emission peak centered near 423 nm and photoluminescence quantum yields reached over 30%. Additionally, different mercapto-compounds used as ligands can make different functionalized surfaces, favoring quantum dots dispersion in different media and their further applications. It was observed that the band edge emission has the main contribution to the bright violet luminescence.  相似文献   

19.
通过稳态光谱和时间分辨荧光光谱研究了巯基丙酸(MPA)分子对由量子点到ZnO纳米粒子薄膜的电荷转移过程的影响。研究发现,相对于CdSe纳米粒子薄膜样品,没有MPA分子参与作用的CdSe/ZnO薄膜样品和有MPA分子连接的CdSe/MPA/ZnO薄膜样品中都存在从CdSe量子点到ZnO纳米粒子薄膜的有效电荷分离过程,但是相对于CdSe/ZnO样品, CdSe/MPA/ZnO样品中电荷转移速率明显变小。这表明MPA分子本身它并不能促进CdSe到ZnO电荷分离过程,因此可以认为用金属氧化物薄膜直接吸附量子点吸收材料,将能获得高功率转换效率的量子点敏化太阳能电池。  相似文献   

20.
We have studied the spectral properties of mixtures formed by CdS colloidal quantum dots with an average diameter of 2.5 nm and methylene blue molecules and that are dispersed into gelatin. We have revealed that, in the presence of CdS quantum dots, the luminescence intensity of methylene blue increases. We suggest a model of this effect, which is based on electronic excitation energy transfer from luminescence centers of CdS quantum dots to methylene blue molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号