首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We study the uncertainties of quantum mechanical observables, quantified by the standard deviation (square root of variance) in Haar-distributed random pure states. We derive analytically the probability density functions (PDFs) of the uncertainties of arbitrary qubit observables. Based on these PDFs, the uncertainty regions of the observables are characterized by the support of the PDFs. The state-independent uncertainty relations are then transformed into the optimization problems over uncertainty regions, which opens a new vista for studying state-independent uncertainty relations. Our results may be generalized to multiple observable cases in higher dimensional spaces.  相似文献   

2.
Wigner-Yanase skew information could quantify the quantum uncertainty of the observables that are not commuting with a conserved quantity.We present the uncertainty principle for two successive projective measurements in terms of Wigner-Yanase skew information based on a single quantum system.It could capture the incompatibility of the observables,i.e.the lower bound can be nontrivial for the observables that are incompatible with the state of the quanaim system.Furthermore,the lower bound is also constrained by the quantum Fisher information.In addition,we find the complementarity relation between the uncertainties of the observable which operated on the quantum state and the other observable that performed on the post-measured quantum state and the uncertainties formed by the non-degenerate quantum observables performed on the quantum state,respectively.  相似文献   

3.
In this article we use a new entropic function, derived from an f-divergence between two probability distributions, for the construction of an alternative entropic uncertainty relation. After a brief review of some existing f-divergences, a new f-divergence and the corresponding entropic function, derived from it, is introduced and its useful characteristics are presented. This entropic function is then applied to construct an alternative uncertainty relation of two non-commuting observables in quantum physics. An explicit expression for such an uncertainty relation is found for the case of two observables which are the x- and z-components of the angular momentum of the spin-1/2 system.   相似文献   

4.
Employing the lattice theory on majorization, the universal quantum uncertainty relation for any number of observables and general measurement is investigated. It is found that 1) the least bounds of the universal uncertainty relations can only be properly defined in the lattice theory; 2) contrary to variance and entropy, the metric induced by the majorization lattice implies an intrinsic structure of the quantum uncertainty; and 3) the lattice theory correlates the optimization of uncertainty relation with the entanglement transformation under local quantum operation and classical communication. Interestingly, the optimality of the universal uncertainty relation found can be mimicked by the Lorenz curve, initially introduced in economics to measure the wealth concentration degree of a society.  相似文献   

5.
The importance of generalized quantum measurements in quantum optics and precision measurements is indicated. These measurements are formally realizable within conventional quantum mechanics and can often be interpreted as approximate simultaneous measurements of noncommuting observables. An uncertainty relation more stringent than the usual one is derived for these measurements.  相似文献   

6.
Quantum cycles in established heat engines can be modeled with various quantum systems as working substances. For example, a heat engine can be modeled with an infinite potential well as the working substance to determine the efficiency and work done. However, in this method, the relationship between the quantum observables and the physically measurable parameters—i.e., the efficiency and work done—is not well understood from the quantum mechanics approach. A detailed analysis is needed to link the thermodynamic variables (on which the efficiency and work done depends) with the uncertainty principle for better understanding. Here, we present the connection of the sum uncertainty relation of position and momentum operators with thermodynamic variables in the quantum heat engine model. We are able to determine the upper and lower bounds on the efficiency of the heat engine through the uncertainty relation.  相似文献   

7.
A generalized Onsager reciprocity theorem emerges as an exact consequence of the structure of the nonlinear equation of motion of quantum thermodynamics and is valid for all the dissipative nonequilibrium states, close and far from stable thermodynamic equilibrium, of an isolated system composed of a single constituent of matter with a finite-dimensional Hilbert space. In addition, a dispersion-dissipation theorem results in a precise relation between the generalized dissipative conductivity that describes the mutual interrelation between dissipative rates of a pair of observables and the codispersions of the same observables and the generators of the motion. These results are presented together with a review of quantum thermodynamic postulates and general results.  相似文献   

8.
为什么不确定原理是量子力学的基本原理   总被引:1,自引:0,他引:1  
首先给出了量子力学观测量用算子表示的物理基础,然后在此基础上说明为什么不确定原理是量子力学的基本原理。  相似文献   

9.

The purpose of this paper is to give a perspective about the Robertson-Schrödinger uncertainty relation via random observables instead of random quantum state in this relation. Specifically, we randomize two observables by choosing them from Gaussian Unitary Ensemble (GUE) and Wishart ensemble, respectively, with a fixed quantum state, and then calculate the average of difference between uncertainty-product and its lower bound in the Robertson-Schrödinger uncertainty relation. Then we consider such average how distribute as to that given quantum state. By doing so, we can figure out how the gap between uncertainty-product and its lower bound becomes larger when increasing the dimensions.

  相似文献   

10.
The uncertainty principle limits the ability to simultaneously predict measurement outcomes for two non-commuting observables of a quantum particle. However, the uncertainty can be violated by considering a particle as a quantum memory correlated with the primary particle. By modeling an Unruh–Dewitt detector coupled to a massless scalar field, it is explored how the Unruh effect affects the entropic uncertainty and the tighter lower bound for a pair of entangled detectors is probed when one of them is accelerated. It is found that Unruh thermal noise really gives rise to an increase of entropic uncertainty for the given conditions since the correlation between quantum memory and the measured system is decreased. It is shown that the bound of the entropic uncertainty relations, in the presence of memory, can be formulated by introducing the Holevo quantity and mutual information. It is also noticed that Adabi's lower bound is tighter than that of Berta, and just the optimal bound under the Unruh effect. Moreover, it is shown that Berta's lower bound is unrelated to the choice of complementary observables, while the optimal Adabi's lower bound is dependent on the measurement choice. It is worth mentioning that the investigations may offer a better understanding of the entropic uncertainty in a relativistic motion.  相似文献   

11.
The Heisenberg uncertainty principle describes a basic restriction on an observer's ability of precisely predicting the measurement of a pair of noncommuting observables, and virtually is at the core of quantum mechanics. Herein, the aim is to study the entropic uncertainty relation (EUR) under the background of a Schwarzschild black hole and its control. Explicitly, dynamical features of the measuring uncertainty via entropy are developed in a practical model where a stationary particle interacts with its surrounding environment while another particle—serving as a quantum memory reservoir—undergoes free fall in the vicinity of the event horizon of the Schwarzschild space‐time. It shows higher Hawking temperatures would give rise to an inflation of the entropic uncertainty on the measured particle. This is suggestive of the fact the measurement uncertainty is strongly correlated with degree of mixing present in the evolving particles. Additionally, based on information flow theory, a physical interpretation for the observed dynamical behaviors related with the entropic uncertainty in such a genuine scenario is provided. Finally, an efficient strategy is proposed to reduce the uncertainty by non‐tracing‐preserved operations. Therefore, our explorations may improve the understanding of the dynamic entropic uncertainty in a curved space‐time, and illustrate predictions of quantum measurements in relativistic quantum information sciences.  相似文献   

12.
The recently established universal uncertainty principle revealed that two nowhere commuting observables can be measured simultaneously in some state, whereas they have no joint probability distribution in any state. Thus, one measuring apparatus can simultaneously measure two observables that have no simultaneous reality. In order to reconcile this discrepancy, an approach based on quantum logic is proposed to establish the relation between quantum reality and measurement. We provide a language speaking of values of observables independent of measurement based on quantum logic and we construct in this language the state-dependent notions of joint determinateness, value identity, and simultaneous measurability. This naturally provides a contextual interpretation, in which we can safely claim such a statement that one measuring apparatus measures one observable in one context and simultaneously it measures another nowhere commuting observable in another incompatible context.  相似文献   

13.
It is shown that the Heisenberg uncertainty relation (or soft uncertainty relation) determined by the commutation properties of operators of electromagnetic field quadratures differs significantly from the Robertson–Schrödinger uncertainty relation (or rigorous uncertainty relation) determined by the quantum correlation properties of field quadratures. In the case of field quantum states, for which mutually noncommuting field operators are quantum-statistically independent or their quantum central correlation moment is zero, the rigorous uncertainty relation makes it possible to measure simultaneously and exactly the observables corresponding to both operators or measure exactly the observable of one of the operators at a finite measurement uncertainty for the other observable. The significant difference between the rigorous and soft uncertainty relations for quantum superpositions of coherent states and the two-photon coherent state of electromagnetic field (which is a state with minimum uncertainty, according to the rigorous uncertainty relation) is analyzed.  相似文献   

14.
The generalized uncertainty relation is introduced to calculate the quantum statistical entropy corresponding to cosmic horizon. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is no divergent logarithmic term in the original brick-wall method. And it is obtained that the quantum statistical entropy corresponding to cosmic horizon is proportional to the area of the horizon. Further it is shown that the entropy corresponding to cosmic horizon is the entropy of quantum state on the surface of horizon. The black hole’s entropy is the intrinsic property of the black hole. The entropy is a quantum effect. In our calculation, by using the quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of five-dimensional spacetime. We provide a way to study the quantum statistical entropy corresponding to cosmic horizon in the higher-dimensional spacetime. Supported by the National Natural Science Foundation of China (Grant No. 10374075) and the Natural Science Foundation of Shanxi Province, China (Grant No. 2006011012)  相似文献   

15.
The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.  相似文献   

16.
Heisenberg's uncertainty relations employ commutators of observables to set fundamental limits on quantum measurement. The information concerning incompatibility (non-commutativity) of observables is well included but that concerning correlation is missing. Schrödinger's uncertainty relations remedy this defect by supplementing the correlation in terms of anti-commutators. However, both Heisenberg's uncertainty relations and Schrödinger's uncertainty relations are expressed in terms of variances, which are not good measures of uncertainty in general situations (e.g., when mixed states are involved). By virtue of the Wigner–Yanase skew information, we will establish an uncertainty relation along the spirit of Schrödinger from a statistical inference perspective and propose a conjecture. The result may be interpreted as a quantification of certain aspect of the celebrated Wigner–Araki–Yanase theorem for quantum measurement, which states that observables not commuting with a conserved quantity cannot be measured exactly.  相似文献   

17.
Quantum mechanical uncertainty relations are fundamental consequences of the incompatible nature of noncommuting observables. In terms of the coherence measure based on the Wigner-Yanase skew information, we establish several uncertainty relations for coherence with respect to von Neumann measurements, mutually unbiased bases(MUBs), and general symmetric informationally complete positive operator valued measurements(SIC-POVMs),respectively. Since coherence is intimately connected with quantum uncertainties, the obtained uncertainty relations are of intrinsically quantum nature, in contrast to the conventional uncertainty relations expressed in terms of variance,which are of hybrid nature(mixing both classical and quantum uncertainties). From a dual viewpoint, we also derive some uncertainty relations for coherence of quantum states with respect to a fixed measurement. In particular, it is shown that if the density operators representing the quantum states do not commute, then there is no measurement(reference basis) such that the coherence of these states can be simultaneously small.  相似文献   

18.
In this work, for a Brownian particle interacting with a heat bath, we derive a generalization of the so-called Schrödinger–Langevin or Kostin equation. This generalization is based on a nonlinear interaction model providing a state-dependent dissipation process exhibiting multiplicative noise. Two straightforward applications to the measurement process are then analyzed, continuous and weak measurements in terms of the quantum Bohmian trajectory formalism. Finally, it is also shown that the generalized uncertainty principle, which appears in some approaches to quantum gravity, can be expressed in terms of this generalized equation.  相似文献   

19.
The quantum mechanical measuring process is analyzed from the standpoint of information theory. We determined the remaining uncertainty in the successive measurements of two discrete noncommuting observables and found its lower bound. Using this lower bound, a new simple form of uncertainty relation for two discrete noncommuting observables is proposed.  相似文献   

20.
A new uncertainty relation (UR) is obtained for a system of N identical pure entangled particles if we use symmetrized observables when deriving the inequality. This new expression can be written in a form where we identify a term which explicitly shows the quantum correlations among the particles that constitute the system. For the particular cases of two and three particles, making use of the Schwarz inequality, we obtain new lower bounds for the UR that are different from the standard one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号