首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have demonstrated the synthesis of one-dimensional (1D) structures of bismuth oxide (Bi2O3) by a reaction of a trimethylbismuth (TMBi) and oxygen (O2) mixture at 450 °C. Scanning electron microscopy showed that the product consisted of 1D materials with width or diameters less than 1 μm and lengths up to several tens of micrometers. The X-ray energy dispersive spectroscopy revealed that the materials contained elements of Bi and O. The results of X-ray diffraction and selected area electron diffraction pattern indicated that the obtained Bi2O3 were crystalline with monoclinic structure.  相似文献   

2.
Two types of ZnO/Bi2O3 nanonecklace heterostructures were fabricated using the vapor-phase transport (VPT) method for the first time. These hierarchical structures were well characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS) attached. The growth mechanism of the novel structures were proposed based on these characterizations. Electron-beam irradiation was found to be a powerful and controllable tool in further tailoring such ZnO/Bi2O3 nanonecklace heterostructures. In addition, photoluminescence (PL) emission from the hierarchical nanostructures showed enhancement comparing to the pure Bi2O3 powder.  相似文献   

3.
A novel flower-shaped Bi2O3 superstructure has been successfully synthesized by calcination of the precursor, which was prepared via a citric acid assisted hydrothermal process. The precursor and Bi2O3 were characterized with respect to morphology, crystal structure and elemental chemical state by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It was shown that both the precursor and Bi2O3 flower-shaped superstructure were constructed of numerous nanosheets while the nanosheets consisted of a great deal of nanoparticles. Furthermore, key factors for the formation of the superstructures have been proposed; a mechanism for the growth of the superstructure has been presented based on the FESEM investigation of different growth stages.  相似文献   

4.
The crystal structure and cation composition of oxides of the Ba-Bi-O system in the composition range 80–100 mol % BiO1.5 have been investigated by the methods of transmission electron microscopy. Ordered phases of the compositions Ba: Bi = 2: 9, 1: 6, and 1: 15 with a rhombohedral structure have been revealed. In the range of the compositions Ba: Bi from 1: 36 to 1: 46, phases with triclinic, monoclinic, and cubic structures have been found. The monoclinic and cubic phases have structures similar to the structures of the α and γ modifications of bismuth oxide Bi2O3, respectively. Phase formation was found to be dependent on the following parameters: annealing temperature, partial oxygen pressure, oxygen content in the initial pairs of reacting components (BaO2-Bi2O3, Ba(NO3)2-Bi2O3, BaCO3-Bi2O3), and crucible material (alundum or platinum).  相似文献   

5.
Monoclinic bismuth oxide (Bi2O3) films have been prepared by thermal oxidation of vacuum evaporated bismuth thin films onto the glass substrates. In order to obtain the single phase Bi2O3, the oxidation temperature was varied in the range of 423-573 K by an interval of 50 K. The as-deposited bismuth and oxidized Bi2O3 films were characterized for their structural, surface morphological, optical and electrical properties by means of X-ray diffraction, scanning electron microscopy (SEM), optical absorption and electrical resistivity measurements, respectively. The X-ray analyses revealed the formation of polycrystalline mixed phases of Bi2O3 (monoclinic, α-Bi2O3 and tetragonal, β-Bi2O3) at oxidation temperatures up to 523 K, while at an oxidation temperature of 573 K, a single-phase monoclinic α-Bi2O3 was formed. From SEM images, it was observed that of as-deposited Bi films consisted of the well-defined isolated crystals of different shapes while after thermal oxidation the smaller dispersed grains were found to be merged to form bigger grains. The changes in the optical properties of Bi2O3 films obtained by thermal oxidation at various temperatures were studied from optical absorption spectra. The electrical resistivity measurement depicted semiconducting nature of Bi2O3 with high electrical resistivity at room temperature.  相似文献   

6.
The inorganic colored composite pigments, such as Fe2O3-, Bi4Ti3O12-, and CoAl2O4-coated mica-titania composites, were prepared by hydrolysis of FeCl3, Bi(NO3)3, and Co(NO3)2/Al(NO3)3 in the presence of mica-titania substrate and calcination at different temperatures. The inorganic coating layers on mica-titania substrate surfaces were explored by X-ray diffraction, scanning electron microscopy, Fourier transform infrared, and X-ray photoelectron spectroscopy. Dense and uniform Fe2O3 coating layers were formed on the surfaces of mica-titania substrates. At lower Bi2O3 loading, Bi4Ti3O12 nanoparticles were formed on the surfaces of mica-titania substrates. But at higher Bi2O3 loading, Bi4Ti3O12 nanosheets were formed and perpendicularly oriented to the substrate surfaces. CoAl2O4 nanosheets were formed on the mica-titania substrates and perpendicularly oriented to the substrate surfaces. The pigmentary performances of the inorganic composite pigments were analyzed by CIE, indicating that red, yellow, and blue colored pigments were achieved by coating Fe2O3, Bi4Ti3O12, and CoAl2O4 on mica-titania substrate surfaces, respectively. The pigmentary performances of the inorganic composite pigments were significantly affected by the morphology and loading of inorganic coating layers.  相似文献   

7.
Bi2SiO5 modified Si nanowire array films were fabricated as photo-catalysts via dip-coating Bi(NO3)3 on silver-assisted electroless wet chemical etching Si nanowires and subsequently annealing. The structures and morphologies of as-prepared samples are characterized by X-ray diffraction, Fourier transform infrared spectrum, scanning electron microscopy and transmission electron microscopy. The results of photocatalytic experiments indicated that the Bi2SiO5 modified Si nanowire arrays benefit the improvement for efficient electron-hole separation and photo-catalytic stability, thereby possessing superior photo-degradation performance. These hybrid nanowire arrays will be promising materials for photo-catalysts and degradation agents.  相似文献   

8.
徐国成  潘玲  关庆丰  邹广田 《物理学报》2006,55(6):3080-3085
利用差热分析、X射线衍射和透射电子显微镜等技术对溶胶-凝胶法合成的凝胶的晶化过程进行了分析,实验结果表明,Bi4Ti3O12非晶凝胶晶化过程经历了四个过程:首先在433℃先形成了Bi2O3和TiO2亚稳相,然后在488℃时TiO2亚稳相与Bi2O3反应形成Bi,Ti复合氧化物亚稳相Bi2T 关键词: 钛酸铋 铁电材料 溶胶凝胶 非晶 晶化过程  相似文献   

9.
《Current Applied Physics》2015,15(11):1332-1336
A CaBi4Ti4O15 (CBTO) ceramic in which the Bi2O3 concentration was controlled from 0 to 10 wt% was fabricated using a solid-state reaction method. Structural analysis by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) indicated differences in the preferred grain orientation and size of the plate-like grains according to the Bi2O3 concentration. The orientation of plate-like grains was also found to vary with the Bi2O3 concentration. There was no noticeable change trend of dielectric properties with different Bi2O3 concentrations. Relatively low dielectric constants (about 135) were exhibited by the CBTO ceramic with 1 wt% Bi2O3 and CBTO ceramic with 10 wt% Bi2O3 only, and similar values (about 150) were exhibited by the other ceramics. The dielectric loss exhibited a low value in the range of 0.01–0.09 for all samples (frequency range of 1–100 kHz). Regarding the ratio changes of the piezoelectric coefficient (d33) and the ratio of a-axis orientation of plate-like grains, the trends of these two values were shown to be similar. These results suggest that the addition of Bi2O3 greatly influences the microstructure of CBTO ceramics, including the grain size and orientation of plate-like grains. In particular, the change in the preferred grain orientation is closely related to the change in the piezoelectric properties.  相似文献   

10.
Novel g-C3N4 modified Bi2O3 (g-C3N4/Bi2O3) composites were synthesized by a mixing-calcination method. The samples were characterized by thermogravimetry (TG), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), UV–vis diffuse reflection spectroscopy (DRS), photoluminescence (PL) and photocurrent-time measurement (PT). The photocatalytic activity of the composites was evaluated by degradation of Rhodamine B (RHB) and 4-chlorophenol (4-CP) under visible light irradiation (>400 nm). The results indicated that the g-C3N4/Bi2O3 composites showed higher photocatalytic activity than that of Bi2O3 and g-C3N4. The enhanced photocatalytic activity of the g-C3N4/Bi2O3 composites could be attributed to the suitable band positions between g-C3N4 and Bi2O3. This leads to a low recombination between the photogenerated electron–hole pairs. The proposed mechanism for the enhanced visible-light photocatalytic activity of g-C3N4/Bi2O3 composites was proven by PL and PT analysis.  相似文献   

11.
In this work, Bi2O3/BaTiO3 heterostructure were prepared through a solid milling and annealing process. It was found that Bi3+ dissolved in the BaTiO3 lattice and the chemical bond was constructed between the interface of Bi2O3 and BaTiO3 after annealing process. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV-visible absorption spectra were used to characterize the Bi2O3/BaTiO3 heterostructure. Furthermore, UV-induced catalytic activities of the Bi2O3/BaTiO3 heterostructure was studied by a degradation reaction of methyl orange (MO) dye. The band gap of the Bi2O3/BaTiO3 heterostructure was estimated to be 3.0 eV. Compared with pure Bi2O3 powders, the Bi2O3/BaTiO3 heterostructure had a much higher catalytic activity. An excellent performance of the photocatalytic property of the Bi2O3/BaTiO3 heterostructure is ascribed to high mobility of species and effective separation of photogenerated carriers driven by the photoinduced potential difference generated at the Bi2O3/BaTiO3 junction interface, demonstrating that the Bi2O3/BaTiO3 heterostructure is a promising candidate as a photocatalyst.  相似文献   

12.
Bi2O2CO3 nanosheet with a thickness of less than 20 nm was synthesized via hydrothermal and solvothermal process. The properties of the as-prepared nanosheet were characterized by X-ray diffraction, scanning electron microscopy, and diffuse reflectance spectra. The electronic structure was investigated using first-principle calculations. Application of the as-prepared Bi2O2CO3 nanosheet in photocatalysis was also studied.  相似文献   

13.
A hollow-structured heterojunction consisting of Bi2WO6 nanoplatelets and Bi2O3 nanoparticles was successfully prepared by a facile solvothermal process. Bi2O3/Bi2WO6 heterojunction is the aggregate of some hollow spheres with diameter ranging from several hundred nanometers to 1.5 μm and is connected to each other by tube-like cavums. On the basis of scanning and transmission electron microscopy observation and X-ray diffraction analysis of the samples synthesized at different reaction stages, a possible growth mechanism was proposed for the growth of hollow-structured Bi2O3/Bi2WO6 heterojunction. Its photocatalytic activity was evaluated by degradation of rhodamine B under visible-light irradiation (λ>400 nm). The results indicate that the hollow-structured Bi2O3/Bi2WO6 heterojunction exhibits much higher photocatalytic activity than both pure Bi2WO6 and pure Bi2O3. The improved photocatalytic performance can be ascribed to the heterojunction of Bi2O3 and Bi2WO6 in the framework in which the hierarchical hollow structure possesses good permeability and large surface area. More importantly, the hollow-structured Bi2O3/Bi2WO6 heterojunction is not only highly stable but also easy to be separated by simple sedimentation for recycle.  相似文献   

14.
(40?x)Na2O-xCuO-10Bi2O3-50P2O5 glasses (0 h x h 40) were prepared and studied. Their density, molar volume, glass transition temperature and IR spectroscopy have been investigated in order to understand the structural role of Bi2O3 and CuO in these glasses. In the sodium bismo-phosphate glass, the structures consist of some phosphate chains linked together through P-O-Bi bonds. When copper oxide is added to sodium bismo-phosphate glass, phosphate chains are depolymerised by the incorporation of Cu through P-O-Cu bonds. The former bonds are the origin of the partial glass forming ability of Bi3+ and Cu2+.  相似文献   

15.
In this work, we research two series of Mn-substituted bismuth molybdates: Bi26-2xMn2xMo10O69-d and Bi26Mo10-2yMn2yO69-d. The synthesis of powder samples is performed by the conventional solid state technology. Samples are characterized by X-ray diffraction, scanning electron microscopy, and chemical analysis methods, and it is shown that single phase Bi26-2xMn2xMo10O69-d and Bi26Mo10-2yMn2yO69-d complex oxides form up to x = 0.8 and y = 0. We use densitometry, grain size measurements and scanning electron microscopy to study the morphology of ceramic pellets and powders. This issue reveals formation of dense ceramic samples with low porosity (≤3%). High-temperature X-ray diffraction is used to define small deviation of unit cell parameters from their linear dependence on temperature. Measurement of electrical conductivity is made using a.c. impedance spectroscopy method. We observe the decrease of electrical conductivity in Bi26-2xMn2xMo10O69-d series depending on dopant concentration.  相似文献   

16.
In this study, the new type electrolyte (Yb2O3)x(Dy2O3)y(Bi2O3)1-x-y ternary compounds were synthesized with different stoichiometric ratios by the solid-state reaction method at different annealing treatment and also their microstructural and electrical properties were analysed. X-ray powder diffraction results showed that the high temperature δ-phase of pure monoclinic Bi2O3 has been synthesized by doping of Yb2O3. Grain size and grain form of pellet formed samples was compared from their surface images taken by the scanning electron microscopy. The grain size has been varying between ~17–37 µm, and degrading with the increasing dopant concentrations. The relationships between the structural parameters (e.g. lattice parameters, crystallite size and the lattice microstrain) and structural properties (e.g. ionic radii of dopant cations and heat treatment procedure) were particularly discussed. Total conductivity values were calculated by Nyquistic complex impedance plot. Impedance measurement revelaed that total conductivity values of the samples increase with the increasing Yb dopant ratio. The activation energies calculated by the Arrhenius approach are measured at around 1?eV. In addition, activation energies and pre-exponential terms decrease with the increasing Yb cation dopant rate for the same ambient temperature.  相似文献   

17.
Novel nest-like (NH4)2V6O16·1.5H2O structures made of nanobelts have been synthesized by a facile hydrothermal approach. The powder X-ray diffraction pattern of the sample reveals the monoclinic crystalline phase of (NH4)2V6O16·1.5H2O. The scanning electron microscopy images of the sample obtained at 130 °C for 3 days exhibit nest-like morphology. The transmission electron microscopy result reveals that the nanobelts have a smooth surface. The selected area electron diffraction pattern of the nanobelts indicates single crystalline nature. The two major weight losses occur in thermogravimetric analysis which correspond to the removal of water and ammonia molecules. Further, calcination of the (NH4)2V6O16·1.5H2O product results in the formation of orthorhombic phase of shcherbianite V2O5.  相似文献   

18.
A novel morphology of Bi2O3 nanomaterial (nanosquaresheets) has been successfully synthesized in large area by thermal evaporation of commercial Bi2O3 powder at high temperatures. The Bi2O3 nanosquaresheets (NSSs) are perfect regular squares and have sharp, uniform edges. The typical length of the sides is in the range of 200–600 nm. The thickness varies from 30 to 100 nm. Electron microscopy observations show that the Bi2O3 NSSs are single crystalline. The growth of Bi2O3 NSSs is probably controlled by a vapor–solid mechanism. The dominate growth directions are [2̄10] and [1̄2̄2] within the (245) planes. PACS 81.05.Hd; 81.10.Bk; 81.16.Be  相似文献   

19.
In this study, (Bi2O3)1?x?y(Sm2O3)x(CeO2)y ternary system was synthesized by using solid-state reaction method. Structural, morphological, thermal and electrical properties of the samples were evaluated by means of X-ray diffraction (XRD), scanning electron microscopy, thermo gravimetry/differential thermal analyzer and four-probe method. The XRD measurement results indicated that the samples (x = 10–15, y = 5–10–15–20) had cubic δ-phase crystallographic structure. The phase stability of the samples was checked by the differential thermal analyzer measurements, which indicates most of the samples have stable δ-Bi2O3 phase. The electrical conductivity measurement results showed that the electrical conductivity increased with mol% CeO2 molar ratio at a fixed molar ratio of Sm2O3. The highest electrical conductivity obtained for the (Bi2O3)0.65(Sm2O3)0.15(CeO2)0.20 system was 1.55 × 10?2 (Ω.cm)?1 at 600 °C. The activation energies were also calculated at low temperature range (350–650 °C) which vary from 1.1325 to 1.4460 eV and at high temperature (above 650 °C) which vary from 0.4813 to 1.1071 eV.  相似文献   

20.
Highly textured bismuth oxide (Bi2O3) thin films have been prepared using anodic oxidation of electrodeposited bismuth films onto stainless steel substrates. The Bi2O3 films were uniform and adherent to substrate. The Bi2O3 films were characterized for their structural and electrical properties by means of X-ray diffraction (XRD), electrical resistivity and dielectric measurement techniques. The X-ray diffraction pattern showed that Bi2O3 films are highly textured along (1 1 1) plane. The room temperature electrical resistivity of the Bi2O3 films was 105 Ω cm. Dielectric measurement revealed normal oxide behavior with frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号