首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new application of a fractal concept to quantum physics has been developed. The fractional path integrals over the paths of the Levy flights are defined. It is shown that if fractality of the Brownian trajectories leads to standard quantum mechanics, then the fractality of the Levy paths leads to fractional quantum mechanics. The fractional quantum mechanics has been developed via the new fractional path integrals approach. A fractional generalization of the Schrodinger equation has been discovered. The new relationship between the energy and the momentum of the nonrelativistic fractional quantum-mechanical particle has been established, and the Levy wave packet has been introduced into quantum mechanics. The equation for the fractional plane wave function has been found. We have derived a free particle quantum-mechanical kernel using Fox's H-function. A fractional generalization of the Heisenberg uncertainty relation has been found. As physical applications of the fractional quantum mechanics we have studied a free particle in a square infinite potential well, the fractional "Bohr atom" and have developed a new fractional approach to the QCD problem of quarkonium. We also discuss the relationships between fractional and the well-known Feynman path integral approaches to quantum mechanics. (c) 2000 American Institute of Physics.  相似文献   

2.
To model physical phenomena more accurately, fractional order differential equations have been widely used. Investigating exact solutions of the fractional differential equations have become more important because of the applications in applied mathematics, mathematical physics, and other areas. In this work, by means of the trial solution method and complete discrimination system, exact traveling wave solutions of the conformable time-fractional Zakharov–Kuznetsov equation and conformable time-fractional Zoomeron equation have been obtained and also solutions have been illustrated. Finding exact solutions of these equations that are encountered in plasma physics, nonlinear optics, fluid mechanics, and laser physics can help to understand nature of the complex phenomena.  相似文献   

3.
A variety of considerations from different points of view including non-Markovian stochastic processes, basic quantum mechanics, and a mechanism based on condensed matter physics, all lead to the fractional exponential decay at long times in relaxation processes. Implications of this decay law and its verifiable predictions in a broad range of phenomena in condensed matter physics are pointed out.  相似文献   

4.
Two decades ago, standard quantum mechanics entered into a new territory called space-fractional quantum mechanics, in which wave dynamics and effects are described by the fractional Schrödinger equation. Such territory is now a key and hot topic in diverse branches of physics, particularly in optics driven by the recent theoretical proposal for emulating the fractional Schrödinger equation. However, the light-wave propagation in saturable nonlinear media with space fractional derivatives is yet to be clearly disclosed. Here, such nonlinear optics phenomenon is theoretically investigated based on the nonlinear fractional Schrödinger equation with nonlinear lattices—periodic distributions of either focusing cubic (Kerr) or quintic saturable nonlinearities—and the existence and evolution of localized wave structures allowed by the model are addressed. The model upholds two kinds of one-dimensional soliton families, including fundamental solitons (single peak) and higher-order solitonic structures consisting of two-hump solitons (in-phase) and dipole ones (anti-phase). Notably, the dipole solitons can be robust stable physical objects localized merely within a single well of the nonlinear lattices—previously thought impossible. Linear-stability analysis and direct simulations are executed for both soliton families, and their stability regions are acquired. The predicted solutions can be readily observed in optical experiments and beyond.  相似文献   

5.
In this paper we use Dirac function to construct a fractional operator called fractional corresponding operator, which is the general form of momentum corresponding operator. Then we give a judging theorem for this operator and with this judging theorem we prove that R–L, G–L, Caputo, Riesz fractional derivative operator and fractional derivative operator based on generalized functions, which are the most popular ones, coincide with the fractional corresponding operator. As a typical application, we use the fractional corresponding operator to construct a new fractional quantization scheme and then derive a uniform fractional Schrödinger equation in form. Additionally, we find that the five forms of fractional Schrödinger equation belong to the particular cases. As another main result of this paper, we use fractional corresponding operator to generalize fractional quantization scheme by using Lévy path integral and use it to derive the corresponding general form of fractional Schrödinger equation, which consequently proves that these two quantization schemes are equivalent. Meanwhile, relations between the theory in fractional quantum mechanics and that in classic quantum mechanics are also discussed. As a physical example, we consider a particle in an infinite potential well. We give its wave functions and energy spectrums in two ways and find that both results are the same.  相似文献   

6.
普通物理力学和理论力学的整合   总被引:2,自引:0,他引:2  
李复  安宇 《大学物理》2004,23(12):51-55
理顺物理类普通物理力学和理论力学的关系,将理论力学中的牛顿力学部分基本上都归入普物力学,加强分析力学部分,并增加非线性力学,改名为分析力学.  相似文献   

7.
8.
In the literature, the deviations from standard behaviors of the solutions of the kinetic equation and the analogous diffusion equation are put forward by investigations which are carried out in the frame of fractional mathematics and nonextensive physics. On the other hand, the physical origins of the order of derivative namely α in fractional mathematics and the entropy index q in nonextensive physics are a topic of interest in scientific media. In this study, the solutions of the diffusion equation which have been obtained in the framework of fractional mathematics and nonextensive physics are revised. The diffusion equation is solved by the cumulative diminuation/growth method which has been developed by two of the present authors and physical nature of the parameters α and q are enlightened in connection with fractality of space and the memory effect. It has been emphasized that the mathematical basis of deviations from standard behavior in the distribution functions could be established by fractional mathematics where as the physical mechanism could be revealed using the cumulative diminuation/growth method.  相似文献   

9.
The fractional generalization of Hamiltonian mechanics is constructed by using the Lagrangian involving fractional derivatives. In this paper the equation of projectile motion with air friction using fractional Hamiltonian mechanics and equation for current loop involving electric source, a resistor, an inductor and a capacitor has been obtained. Furthermore, fractional optics has been introduced.  相似文献   

10.
The dimension (and signature) of space is a result of distances being real numbers and quantum mechanical state functions being complex ones; it is an inescapable consequence of quantum mechanics and group theory. So nonrelativistic quantum mechanics cannot be complete (it requiresad hoc additional assumptions) and consistent (nor can classical physics), leading to relativity, quantum mechanics, and field theory. Implications of the constraints of consistency and physical reasonableness and of group theory for the structure of these theories are considered. It appears that there are simple, perhaps unavoidable reasons for the laws of physics, the nature of the world they describe, and the space in which they act.  相似文献   

11.
The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using a fractional generalization of the Fundamental Theorem of Calculus. We define the differential and integral vector operations. The fractional Green’s, Stokes’ and Gauss’s theorems are formulated. The proofs of these theorems are realized for simplest regions. A fractional generalization of exterior differential calculus of differential forms is discussed. Fractional nonlocal Maxwell’s equations and the corresponding fractional wave equations are considered.  相似文献   

12.
We investigate the relationships between models of power-law long-range interactions and mechanics based on fractional derivatives. We present the fractional Lagrangian density which gives the Euler–Lagrange equation that serves as the equation of motion for fractional-power-law long-range interactions. We derive this equation by the fractional variational method. In addition, we derive a Noether-like current from the fractional Lagrangian density.  相似文献   

13.
Ady Stern 《Annals of Physics》2008,323(1):204-249
The dichotomy between fermions and bosons is at the root of many physical phenomena, from metallic conduction of electricity to super-fluidity, and from the periodic table to coherent propagation of light. The dichotomy originates from the symmetry of the quantum mechanical wave function to the interchange of two identical particles. In systems that are confined to two spatial dimensions particles that are neither fermions nor bosons, coined “anyons”, may exist. The fractional quantum Hall effect offers an experimental system where this possibility is realized. In this paper we present the concept of anyons, we explain why the observation of the fractional quantum Hall effect almost forces the notion of anyons upon us, and we review several possible ways for a direct observation of the physics of anyons. Furthermore, we devote a large part of the paper to non-abelian anyons, motivating their existence from the point of view of trial wave functions, giving a simple exposition of their relation to conformal field theories, and reviewing several proposals for their direct observation.  相似文献   

14.
A simple route to generate magnetotransport data is reported that results in fractional quantum Hall plateaus in the conductance without invoking strongly correlated physics. Ingredients to the generating model are conducting tiles with integer quantum Hall effect and metallic linkers, further Kirchhoff rules. When connecting few identical tiles in a mosaic, fractional steps occur in the conductance values. Richer spectra representing several fractions occur when the tiles are parametrically varied. Parts of the simulation data are supported with purposefully designed graphene mosaics in high magnetic fields. The findings emphasize that the occurrence of fractional conductance values, in particular in two‐terminal measurements, does not necessarily indicate interaction‐driven physics. The importance of an independent determination of charge densities is underscored and similarities with and differences to the fractional quantum Hall effect are critically discussed.  相似文献   

15.
The symmetric fractional derivative is introduced and its properties are studied. The Euler-Lagrange equations for models depending on sequential derivatives of type are derived using minimal action principle. The Hamiltonian for such systems is introduced following methods of classical generalized mechanics and the Hamilton’s equations are obtained. It is explicitly shown that models of fractional sequential mechanics are non-conservative. The limiting procedure recovers classical generalized mechanics of systems depending on higher order derivatives. The method is applied to fractional deformation of harmonic oscillator and to the case of classical frictional force proportional to velocity. Presented at the 10th International Colloquium on Quantum Groups: “Quantum Groups and Integrable Systems”, Prague, 21–23 June 2001.  相似文献   

16.
《Physics letters. A》2020,384(31):126788
Nowadays, the Burgers-type equations are seen in plasma astrophysics, ocean dynamics, atmospheric science, computational fluid mechanics, cosmology, condensed matter physics, statistical physics, nonlinear acoustics, vehicular traffic, electronic transport, and so forth. In this Letter, we investigate an extended (2+1)-dimensional coupled Burgers system in fluid mechanics. With symbolic computation and with reference to the velocity components in fluid-related problems, we construct a hetero-Bäcklund transformation and a similarity reduction, depending on the coefficients in the system.  相似文献   

17.
Starting from Planck's thesis concerning the aims and methods of theoretical physics as stated in his famous lecture (Leiden, 1908) onDie Einheit des physikalischen Weltbildes and his lectures in the next year at Columbia University, we discuss some aspects of physics and mathematics in our time. We compare relativity theory, quantum mechanics, and atomic physics at their inception with the situation today in field theories, elementary particle physics, and mathematical physics.  相似文献   

18.
The generalized physics laws involving fractional derivatives give new models and conceptions that can be used in complex systems having memory effects. Using the fractional differential forms, the classical electromagnetic equations involving the fractional derivatives have been worked out. The fractional conservation law for the electric charge and the wave equations were derived by using this method. In addition, the fractional vector and scalar potentials and the fractional Poynting theorem have been derived.  相似文献   

19.
The problem of “1∕f” noise has been with us for about a century. Because it is so often framed in Fourier spectral language, the most famous solutions have tended to be the stationary long range dependent (LRD) models such as Mandelbrot’s fractional Gaussian noise. In view of the increasing importance to physics of non-ergodic fractional renewal models, and their links to the CTRW, I present preliminary results of my research into the history of Mandelbrot’s very little known work in that area from 1963 to 1967. I speculate about how the lack of awareness of this work in the physics and statistics communities may have affected the development of complexity science, and I discuss the differences between the Hurst effect, “1∕f” noise and LRD, concepts which are often treated as equivalent.  相似文献   

20.
We calculate the time taken by a wave packet to travel through a classically forbidden region of space in space fractional quantum mechanics. We obtain the close form expression of tunneling time from a rectangular barrier by stationary phase method. We show that tunneling time depends upon the width b of the barrier for b and therefore Hartman effect doesn't exist in space fractional quantum mechanics. Interestingly we found that the tunneling time monotonically reduces with increasing b. The tunneling time is smaller in space fractional quantum mechanics as compared to the case of standard quantum mechanics. We recover the Hartman effect of standard quantum mechanics as a special case of space fractional quantum mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号