首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to examine the effects of polymer matrix substituting crystalline solvents and photoisomerization of azobenzene in photo-modulation of AC susceptibility discovered recently, we have compared various quantum magnetic properties of new organic/inorganic hybrid materials composed of Mn12-acetate (a typical single-molecule magnet, [Mn12(CH3COO)16(H2O)4O12]·2CH3COOH·4H2O) containing or not containing azobenzene casted into polymethylmethacrylate (PMMA) films on Polyvinylalchol (PVA) films. The M-H hysteresis loops below blocking temperature for both materials exhibited distinct differences of the dM/dH vs. H plots, which suggested azobenzene as well as crystalline solvents resulted in tuning of magnetic properties. Moreover, the AC susceptibility at 0.1-1000 Hz frequencies provided activation energy Ueff=87 K from Arrhenius law for both materials, albeit Cole-Cole plots indicated perturbation of quantum magnetization for both hybrid materials in polymer matrix.  相似文献   

2.
The aim of this study is to compare water vapour sorption isotherms on various mesoporous materials in their pristine state and after silanisation. Commonly the pristine state is regarded as hydrophilic and the silanised one as hydrophobic. Water vapour sorption experiments are discussed for a highly ordered nanoporous aluminium oxide with straight cylindrical channels of ca. 25 nm diameter and for various controlled porous glasses (CPGs) with disordered pores in the range of 13 nm diameter. The water sorption isotherms exhibit in both cases a hysteresis over the entire humidity range. At higher humidities the pristine materials show capillary condensation whereas for the silanised samples this phase transition does not occur or even a loss of water is recorded as for the silanised Al2O3. Surprisingly, for the silanised Al2O higher water uptake is observed in the low humidity region. Application of the excess surface work (ESW) method delivers a reduced structural component in the long range interaction of the water molecules with a hydrophobic surface. Inverse gas chromatography studies of the silanised CPGs result in an increased short range dispersive part of the surface energy with the increasing degree of silanisation.  相似文献   

3.
Zirconia surface modification by various chemical treatments after silica coating by sandblasting was investigated in this study. The surface of silica-coated dental zirconia was hydroxylated by treatment with different acids at room temperature for 4 h, rinsed with deionized water and air-dried. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Shifts in binding energies for Zr 3d5/2 and Si 2p peaks were observed after treatment with acids, thereby showing a change in the chemical states of zirconium and silicon on the surface layer of silica-coated zirconia. The XPS analysis revealed that the silica-coated zirconia (SiO2-ZrO2) surfaces had changed to hydrous silica-coated zirconia (SiO2-ZrO2·nH2O). One-way ANOVA analysis revealed there was significant difference in both surface roughness parameters of silica-coated zirconia after chemical treatments and the surface topography varied depending on the acid treatment.  相似文献   

4.
Adsorption of octadecyltrichlorosilane (OTS) on mesoporous SBA-15 has been studied by using Brunauer-Emmett-Teller (BET) surface area analysis, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermo-gravimetric analysis (TGA) techniques. BET surface area analysis shows decrease of surface area from 930 to 416 m2/g after OTS adsorption. SEM pictures show close attachment of SBA-15 particles. EDAX measurements show increase of carbon weight percentage and decrease of oxygen and silicon weight percentage. XPS results closely support EDAX analysis. FTIR spectra shows presence of methyl (-CH3) and methylene (-CH2) bands and oriented OTS monolayer on SBA-15. Thermo-gravimetric analysis shows that the OTS adsorbed on SBA-15 are stable up to a temperature of 230 °C and that the OTS monolayers decompose between 230 and 400 °C.  相似文献   

5.
The functional copolymer bearing alkoxysilyl and pyrene groups, poly[3-(triethoxysilyl)propyl methacrylate]-co-[(1-pyrene-methyl) methacrylate] (TEPM13-co-PyMMA3), was synthesized via atom transfer radical polymerization. Attributing the π–π interaction of pyrene units with the walls of single-walled carbon nanotubes (SWNTs), this polymer could disperse and exfoliate SWNTs in different solvents through physical interaction as demonstrated by TEM, UV/Vis absorption, and FT-IR analysis. The alkoxysilyl groups functionalized SWNTs were reacted with different inorganic precursors via sol–gel reaction, and, as a results, silica, titania, and alumina were coated onto the surface of SWNTs, respectively via copolymers as a molecular glue. The nanocomposites of ceramic oxides/SWNTs were characterized by SEM analysis. Dependent upon the feed, the thickness of inorganic coating can be tuned easily. This study supplies a facile and general way to coat SWNTs with ceramic oxides without deteriorating the properties of pristine SWNTs.  相似文献   

6.
Top-contact organic thin-film transistors (OTFTs) of pentacene have been fabricated on bare SiO2 and SiO2 modified with hexamethyldisilazane (HMDS) and octadecyltrichlorosilane (OTS). The pentacene films were deposited from a supersonic molecular beam source with kinetic energy of incident molecules ranging from 1.5 to 6.7 eV. The field-effect mobility of OTFTs was found to increase systematically with increasing kinetic energy of the molecular beam. The improvements are more important on HMDS- and OTS-treated surfaces than on bare SiO2. Tapping mode atomic force microscopy images reveal that pentacene thin films deposited at high kinetic energy form with significantly larger grains—independent of surface treatment—than films deposited using low-energy beams.  相似文献   

7.
Titanium oxide (TiO2) and zirconium oxide (ZrO2) thin films have been deposited on modified Si(1 0 0) substrates selectively by metal-organic chemical vapor deposition (MOCVD) method using new single molecular precursor of [M(OiPr)2(tbaoac)2] (M=Ti, Zr; tbaoac=tertiarybutyl-acetoacetate). For changing the characteristic of the Si(1 0 0) surface, micro-contact printing (μCP) method was adapted to make self-assembled monolayers (SAMs) using an octadecyltrichlorosilane (OTS) organic molecule which has -CH3 terminal group. The single molecular precursors were prepared using metal (Ti, Zr) isopropoxide and tert-butylacetoacetate (tbaoacH) by modifying standard synthetic procedures. Selective depositions of TiO2 and ZrO2 were achieved in a home-built horizontal MOCVD reactor in the temperature range of 300-500 °C and deposition pressure of 1×10−3-3×10−2 Torr. N2 gas (5 sccm) was used as a carrier gas during film depositions. TiO2 and ZrO2 thin films were able to deposit on the hydrophilic area selectively. The difference in surface characteristics (hydrophobic/hydrophilic) between the OTS SAMs area and the SiO2 or Si-OH layer on the Si(1 0 0) substrate led to the site-selectivity of oxide thin film growth.  相似文献   

8.
We present a successful hierarchical modeling approach which accounts for interface effects on diffusivity, ignored in classical continuum theories. A molecular dynamics derived diffusivity scaling scheme is incorporated into a finite element method to model transport through a nanochannel. In a 5 nm nanochannel, the approach predicts 2.2 times slower mass release than predicted by Fick’s law by comparing time spent to release 90% of mass. The scheme was validated by predicting experimental glucose diffusion through a nanofluidic membrane with a correlation coefficient of 0.999. Comparison with experiments through a nanofluidic membrane showed interface effects to be crucial. We show robustness of our discrete continuum model in addressing complex diffusion phenomena in biomedical and engineering applications by providing flexible hierarchical coupling of molecular scale effects and preserving computational finite element method speed.  相似文献   

9.
Cobalt-chromium (Co-Cr) alloys have been extensively used for medical implants because of their excellent mechanical properties, corrosion resistance, and biocompatibility. This first time study reports the formation and stability of self-assembled monolayers (SAMs) on a Co-Cr-W-Ni alloy. SAMs of octadecyltrichlorosilanes (OTS) were coated on sputtered Co-Cr-W-Ni alloy thin film and bulk Co-Cr-W-Ni alloy. OTS SAM coated alloy specimens were characterized using contact angle goniometry, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Contact angle analysis and FTIR suggested that ordered monolayers were coated on both sputtered and bulk alloy. XPS suggested the selective dissolution of cobalt from the alloy during the formation of OTS SAM. The bonding between the alloy and the OTS SAM was mainly attributed to Si-O-Cr and Si-O-W covalent bonds and a smaller contribution from Si-O-Co bonds. AFM images showed the distribution of islands of monolayers coated on the alloy. The height of monolayers in majority of the islands was closer to the theoretical length of fully extended OTS molecules oriented perpendicular to the surface. The stability of OTS SAM was investigated in tris-buffered saline at 37 °C for up to 7 days. Contact angle, FTIR, and XPS collectively confirmed that the monolayers remain ordered and bound to the alloy surface under this condition. This study shows that Co-Cr alloys can be surface modified using SAMs for potential biomedical applications.  相似文献   

10.
Two nanosilica A-300/zirconia (SZ) composites at zirconia content CZrO2=5 and 20 wt.% were synthesized using a wet impregnation method with zirconium acetylacetonate as a precursor. The specific surface area of SZ is larger than that of A-300 because zirconia is composed of nanoparticles (crystallites of 4 nm in average size at CZrO2=20 wt.%) smaller than those of the initial silica (dav ≈ 11 nm). A-300 and SZ modified by polydimethylsiloxane (PDMS at molecular weight 1700 and 7960) in amounts of 5, 10, 15, 20 and 40 wt.% remained in the powder state with aggregates of primary particles smaller than those of A-300. SZ is more hydrophilic than silica but PDMS/SZ is more hydrophobic (maximum hydrophobic at CPDMS 15-20 or 40 wt.%) than PDMS/A-300.  相似文献   

11.
Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) membrane, with its excellent chemical and mechanical properties, has good potential for broad applications. However, due to its hydrophobic nature, microbial colonization is commonly encountered. In this work, electrospun PVDF-HFP fibrous membranes were surface modified by poly(4-vinyl-N-alkylpyridinium bromide) to achieve antibacterial activities. The membranes were first subjected to plasma pretreatment followed by UV-induced surface graft copolymerization of 4-vinylpyridine (4VP) and quaternization of the grafted pyridine groups with hexylbromide. The chemical composition of the surface modified PVDF-HFP electrospun membranes was studied by X-ray photoelectron spectroscopy (XPS). The morphology and mechanical properties of pristine and surface modified PVDF-HFP fibrous membranes were characterized by scanning electron microscopy (SEM) and tensile test, respectively. The antibacterial activities of the modified electrospun PVDF-HFP fibrous membranes were assessed against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). The results showed that the PVDF-HFP fibrous membranes modified with quaternized pyridinium groups are highly effective against both bacteria with killing efficiency as high as 99.9999%.  相似文献   

12.
The diffusion of potassium on the polycrystalline iron surface modified by adsorbed oxygen and nitrogen has been studied by means of AES. The migration of potassium atoms has been observed independently on the constitution of the iron surface in the temperature range between 300 and 450 °C. The final concentration of potassium on the iron surface increases with temperature from 300 to 400 °C, irrespective of what atoms accompany potassium on the surface. At 450 °C, the final level of potassium concentration is decreased. The profiles of the concentration on the surface along the line crossing the source of potassium were also acquired. Applying the diffusion model of finite source, the diffusion coefficient of potassium for oxygen-covered and nitrogen-covered surfaces were evaluated.  相似文献   

13.
G. Petot-Ervas  A. Rizea  C. Petot 《Ionics》1997,3(5-6):405-411
The kinetics of the oxygen exchange reactions at the electrodes of a galvanic cell using yttria-doped zirconia single crystals (9.5 mole-% Y2O3) as solid electrolyte and Pt or Ag as electrode materials was studied by complex impedance spectroscopy. The electrode resistance when using silver was found to have negligible values over the temperature range 180 – 900 °C. In agreement with these results, oxygen sensors were tested successfully at temperatures as low as 200 °C. According to the performance of silver as electrode material, an electrochemical method was developed to determine the oxygen diffusion coefficient in doped zirconia. The results obtained, compared to those of conductivity and oxygen tracer diffusion measurements, have allowed us to obtain information both on the structure of the defects in yttria-doped zirconia and on the correlation factor. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland, Sept. 13–19, 1997  相似文献   

14.
The functionalisation of a surface with an organic monolayer containing photoactive moieties such as the azobenzene chromophore opens an elegant route for controlling its wettability by light. In this paper we investigate the microscopic origin of the macroscopic change in wettability upon photo-induced cis-trans isomerization of a copolymeric diphenyl-diazene Langmuir-Blodgett monolayer. Polarised UV-Vis and FTIR spectroscopy have been used to monitor the orientational order of various functional groups, Atomic Force Microscopy and Imaging Ellipsometry is employed for the quantification of the surface roughness and morphology, contact angle and surface potential measurements are carried out for a characterisation of the polar ordering. The data analysis is further supported by semi-empirical and ab-initio calculations of the molecular dipole moments and the normal IR-modes of the fluorinated chromophore. The combination of all these techniques provides a detailed molecular picture. The data suggest that changes in the projection of the dipole moment onto the surface normal caused by isomerization of the azobenzene are responsible for the observed changes in the surface energy. This knowledge allowed us to predict guidelines for the synthesis of molecules in order to maximize the wetting contrast upon photo-irradiation. Received 5 September 2002 Published online: 16 April 2003 RID="a" ID="a"e-mail: hubert.motschmann@mpikg-golm.mpg.de  相似文献   

15.
The present study explores the features of tetragonally stabilized polycrystalline zirconia nanophosphors prepared by a sonochemistry based synthesis from zirconium oxalate precursor complex. The sonochemically prepared pristine zirconia, 3 mol%, 5 mol% and 8 mol% yttrium doped zirconia nanophosphors were characterized using thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and photoluminescence spectroscopy (PL). The reaction mechanism of formation of zirconia nanophosphors is discussed in detail. The probable sonochemical formation mechanism is being proposed. Stabilization of tetragonal phase of pristine zirconia even at room temperature was effectively established by controlling the particle size using ultrasonic waves. Improved phase purity and good surface morphology of the nanophosphors is being achieved via sonochemical route. FE-SEM micrographs reveal that the nanoparticles have uniform spherical shape and size. The narrow particle size distribution (∼15–25 nm) of the zirconia nanoparticles was found from FE-SEM statistical analysis and further confirmed by TEM. Zirconia nanophosphors exhibit a wide energy band gap and which was found to vary with yttrium dopant concentration. The highlight of the present study is the synthesis of novel nanocrystalline ZrO2 and Y-ZrO2 phosphor which simultaneously emits extremely sharp as well as intense UV, violet and cyan light on exciting the host atom. The yttrium ion dopant further enhances the photoluminescence property of zirconia. These nanocrystalline phosphors are likely to have remarkable optical applications as light emitting UV-LEDs, UV lasers and multi color displays.  相似文献   

16.
Titanium and zirconia are bioinert materials lacking bioactivity. In this work, surface modification of the two typical biomaterials is conducted by Mg-ion-implantation using a MEVVA ion source in an attempt to increase their bioactivity. Mg ions were implanted into zirconia and titanium with fluences ranging from 1 × 1017 to 3 × 1017 ions/cm2 at 40 keV. The Mg-implanted samples, as well as control (unimplanted) samples, were immersed in SBF for 7 days and then removed to identify the presence of calcium and phosphate (Ca-P) coatings and to characterize their morphology and structure by SEM, XRD, and FT-IR. SEM observations confirm that globular aggregates are formed on the surfaces of the Mg-implanted zirconia and titanium while no precipitates are observed on the control samples. XRD and FT-IR analyses reveal that the deposits are carbonated hydroxyapatite (HAp). Our experimental results demonstrate that Mg-implantation improves the bioactivity of zirconia and titanium. Further, it is found that the degree of bioactivity is adjustable by the ion dose. Mechanisms are proposed to interpret the improvement of bioactivity as a result of Mg implantation and the difference in bioactivity between zirconia and titanium.  相似文献   

17.
In this study, the grain boundary diffusion of Cu through a TiN layer with columnar structure was investigated by X-ray photoelectron spectroscopy (XPS). It was observed that Cu atoms diffuse from the Cu layer to the surface along the grain boundaries in the TiN layer at elevated temperature. In order to estimate the grain boundary diffusion constants, we used the surface accumulation method. The diffusivity of Cu through TiN layer with columnar structure from 400 °C to 650 °C is Db≈6×10−11exp(−0.29/(kBT )) cm2/s. Received: 18 May 1999 / Accepted: 8 September 1999 / Published online: 23 February 2000  相似文献   

18.
分子偶极聚合物驻极体的红外和可见光谱研究   总被引:2,自引:0,他引:2  
本文利用红外和可见吸收光谱研究了具有二阶非线性光学活性的分子偶极聚合物驻极体材料中偶极子的取向稳定性与分子结构之间的关系,讨论了制备时所用的溶剂对材料微结构的影响。结果表明该材料在玻璃态温度下极化时,引起生色团分子偶极矩沿电场方向取抽,是建立在生色团分子共轭л体系被破坏的基础上,这是一种亚稳态。偶氮类分子的顺-反结构在光、热的作用下极易发生转变,是引起常温下生色团分子有序取向结构松驰的主要原因。制备时所用的溶剂将影响生色团分子在聚合物基底中的存在形式,进而影响分子偶极聚合物驻极体的稳定性。  相似文献   

19.
The diffusion of N in the group VB metals V and Nb has been studied in the previously uninvestigated temperature range 300–500 °C using ion-beam techniques. Diffusion couples were created by ion implantation. The time-dependent diffusion profiles were monitored by the use of the Nuclear Resonance Broadening (NRB) technique. New values for the solubility of N in Nb were obtained. The diffusion rates presented support recent observations of the diffusivity of interstitial impurities in body-centered cubic metals in which positive deviations from Arrhenius behaviour have been seen at high temperatures.  相似文献   

20.
To study the effects of low earth orbit environment on the surface properties of polymers, phenolphthalein poly(ether sulfone) (PES-C) blocks were irradiated by atomic oxygen in a ground-based simulation system. The surface properties of the pristine and irradiated blocks were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). It was found that atomic oxygen irradiation induced the destruction of PES-C molecular chains, including the scission and oxidation of PES-C molecular chains, as evidenced by FTIR and XPS results. The scission of PES-C molecular chains decreased the relative concentration of C in the surface, while the oxidation increased the relative concentration of O in the surface. The changes in surface chemical structure and composition also changed the surface morphology of the block, which shifted from smooth structure before irradiation to “carpet-like” structure after irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号