首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the quantitative conditions for the lift height for imaging of the magnetic field using magnetic force microscopy (MFM) were optimized. A thin cobalt film deposited on a monocrystalline silicon (1 0 0) substrate with a thickness of 55 nm and a thin nickel film deposited on a glass with a thickness of 600 nm were used as samples. The topography of the surface was acquired by tapping mode atomic force microscopy (AFM), while MFM imaging was performed in the lift mode for various lift heights. It was determined that the sensitivity of the measurements was about 10% higher for images obtained at a scan angle of 90° compared to a scan angle of 0°. Therefore, the three-dimensional surface texture parameters, i.e., average roughness, skewness, kurtosis and the bearing ratio, were determined in dependence on the lift height for a scan angle of 90°. The results of the analyses of the surface parameters showed that the influence of the substrate and its texture on the magnetic force image could be neglected for lift heights above 40 nm and that the upper lift height limit is 100 nm. It was determined that the optimal values of the lift heights were in the range from 60 to 80 nm, depending on the nature of the sample and on the type of the tip used.  相似文献   

2.
Fe50Co50 thin films with thickness of 30 and 4 nm have been produced by rf sputtering on glass substrates, and their surface has been observed with atomic force microscopy (AFM) and magnetic force microscopy (MFM); MFM images reveal a non-null component of the magnetization perpendicular to the film plane. Selected samples have been annealed in vacuum at temperatures of 300 and 350 °C for times between 20 and 120 min, under a static magnetic field of 100 Oe. DC hysteresis loops have been measured with an alternating gradient force magnetometer (AGFM) along the direction of the field applied during annealing and orthogonally to it. Samples with a thickness of 4 nm display lower coercive fields with respect to the 30 nm thick ones. Longer annealing times affect the development of a harder magnetic phase more oriented off the film plane. The field applied during annealing induces a moderate magnetic anisotropy only on 30 nm thick films.  相似文献   

3.
S.J. May 《Applied Surface Science》2006,252(10):3509-3513
Variable-temperature magnetic force microscopy (MFM) has been performed over the temperature range of 298-348 K on ferromagnetic (In,Mn)As thin films deposited by metal-organic vapor phase epitaxy (MOVPE). Ferromagnetic domains were observed with submicron resolution in both single and two phase (In,Mn)As films, persisting up to 328 K. Isolated cylindrical domains ranging from 100 to 350 nm in diameter with densities of 2-5 × 108 cm−2 were observed in phase pure films. Longer range magnetic order, in the form of ribbon-like domains up to 1 μm in length, are present in the regions between the cylindrical domains. Two phase (In,Mn)As films produced a well-resolved complex domain structure consisting of 180° parallel and antiparallel domains. Excellent agreement between the temperature dependence of the relative magnetization obtained by MFM and superconducting quantum interference device measurements was observed.  相似文献   

4.
The fine magnetic stray field from a vortex structure of micron-sized permalloy (Ni80Fe20) elements has been studied by high-resolution magnetic force microscopy. By systematically studying the width of the stray field gradient distribution at different tip-to-sample distances, we show that the half-width at half-maximum (HWHM) of the signal from vortex core can be as narrow as ∼21 nm at a closest tip-to-sample distance of 23 nm, even including the convolution effect of the finite size of the magnetic tip. a weak circular reverse component is found around the center of the magnetic vortex in the measured magnetic force microscope (MFM) signals, which can be attributed to the reverse magnetization around the vortex core. Successive micromagnetic and MFM imaging simulations show good agreements with our experimental results on the width of the stray field distribution.  相似文献   

5.
We present experimental results on the structural and magnetic properties of series of Fe thin films evaporated onto Si(1 1 1), Si(1 0 0) and glass substrates. The Fe thickness, t, ranges from 6 to110 nm. X-ray diffraction (XRD) and atomic force microscopy (AFM) have been used to study the structure and surface morphology of these films. The magnetic properties were investigated by means of the Brillouin light scattering (BLS) and magnetic force microscopy (MFM) techniques. The Fe films grow with (1 1 0) texture; as t increases, this (1 1 0) texture becomes weaker for Fe/Si, while for Fe/glass, the texture changes from (1 1 0) to (2 1 1). Grains are larger in Fe/Si than in Fe/glass. The effective magnetization, 4πMeff, inferred from BLS was found to be lower than the 4πMS bulk value. Stress induced anisotropy might be in part responsible for this difference. MFM images reveal stripe domain structure for the 110 nm thick Fe/Si(1 0 0) only.  相似文献   

6.
Patterned magnetic media have been considered as one of the promising candidates for future ultra-high-density magnetic recording. In this paper, a new kind of patterned medium based on hexagonal ferrite have been studied. We have successfully fabricated strontium ferrite dot arrays by electron beam lithography. Their magnetic properties are evaluated by magnetic force microscopy (MFM) and superconducting quantum interference device (SQUID). The results show the dot arrays have perpendicular anisotropy. Dots with the lateral size larger than 500 nm show multidomain magnetization configuration in the initial magnetization state. However, with dot size decreased to 500 nm, all the dots have single-domain configuration both in the initial magnetization state and remanent magnetization state.  相似文献   

7.
We demonstrate ultra-high-resolution magnetic force microscopy images of perpendicular magnetic storage media using carbon nanotube probes coated by ferromagnetic Co90Fe10 films (20, 30, 40, and 50 nm). By optimizing ferromagnetic film thickness (effective tip diameter), we obtained best magnetic domain image with an 40 nm-Co90Fe10-coated tip (50 nm tip diameter) about a lateral detect density of 1200 k flux per inch on perpendicular magnetic storage medium, one of the highest resolutions in MFM imaging reported for this material system and structure. The observed dependence of tip dimension on signal contrast and image resolution was successfully explained by a theoretical analysis indicating that the signal contrast, along with the physical probe-tip dimension, should be taken into account to design magnetic probes tips for high-resolution magnetic force microscopy.  相似文献   

8.
Magnetic force microscopy (MFM) methods were applied to investigate the peculiarities of magnetization distribution in elliptical 400×600×27 nm Co particles. Reversible transitions between the uniform and vortex states under inhomogeneous magnetic field of MFM probe were observed. Possibility to control the chirality of a magnetic vortex in these particles by MFM probe manipulation was shown.  相似文献   

9.
A specific technique of numerical treatment of atomic force microscopy (AFM) and magnetic force microscopy (MFM) signal has been developed to enhance the quality of raw images, in order both to improve their contrast and to gain better insight on the sample topography and on the local arrangement of the magnetisation vector. Basically, the technique consists in computing the optimum conformal transformation that allows one to superimpose two AFM images of the same area, acquired performing subsequent scans whose fast scan axis were mutually perpendicular, and applying the inverse transform to the second image. After MFM image superposition, the two datasets were either summed or subtracted, in order to improve the magnetic contrast. Computations have been done in a Matlab® workspace with the help of Image Processing Toolbox 4.2. Improved MFM images obtained on both dots and antidots thin evaporated Co arrays in the demagnetised state (after performing alternate field demagnetisation parallel and perpendicular to the array plane) have been interpreted. Samples consisting of large-size patterns (1×1 mm) of circular dots/antidots with square/hexagonal lattices and minimum diameters of 1 μm were prepared by optical lithography. The magnetic film thickness was chosen depending on resist thickness, and varied between 25 and 150 nm, with a fixed ratio 1:4 between metal/resist film thickness. MFM was exploited to obtain images of either intra-dot or inter-antidot magnetic structures.  相似文献   

10.
Magnetic microstructures of a high coercivity Nd-Fe-B sintered magnet in remanent and incomplete thermal demagnetization states have been revealed by using magnetic force microscopy (MFM) with high coercivity tips. MFM results indicate that specimens in a remanent state are single domain and their magnetizations align with the direction of the magnetizing field. The evolution of the magnetic domains with annealing temperatures shows that the thermal demagnetization process consists of four stages. Nd-Fe-B should be heat-treated at about 120-170 °C to make its magnetic state stable before practical applications.  相似文献   

11.
The domain structure of a magnetostrictive Fe40Ni38Mo4B18 amorphous ribbon has been studied using magnetic force microscopy (MFM) at room temperature. First, the evolution of the magnetic domain patterns as a function of the annealing temperature has been investigated. In samples heat treated at 250 and 450 °C for 1 h, a transformation from 90° to 180° domain wall has been clearly observed, while the sample heat treated at 700 °C for 1 h showed a magnetic phase fixed by the crystalline anisotropy. Additionally, the evolution of the magnetic domain structure by applying a DC current was recorded by the MFM technique. For current annealed samples at 1 A for 1, 30 and 60 min, a transformation between different domain patterns has been observed. Finally, in samples treated by the current annealing method under simultaneous stress, an increase of the annealing time gives rise to a different magnetic structure arising from the development of transverse magnetic anisotropy.  相似文献   

12.
The dependence of magnetic properties of GaAs:Mn and MnAs epitaxial films grown on GaAs (001) by laser ablation of Mn and undoped GaAs in a hydrogen atmosphere under the growth conditions has been studied by magnetic force microscopy (MFM). Magnetic probe calibration for quantitative MFM measurements was performed by scanning across the slit of the magnetic-head of a tape recorder through which controlled direct current was passed. The dipole approximation was used to describe the magnetic properties of the MFM probe. Nonuniformity of the magnetization of GaAs:Mn films related to the formation of MnAs nanoinclusions, which are ferromagnetic at 300 K, has been observed. The typical scales of the spatial nonuniformity of the magnetization of GaAs:Mn films were varied from 270 to 550 nm depending on the film-growth conditions. The MnAs phase was identified by MFM measurements at an elevated temperature (up to 80°N).  相似文献   

13.
The information of the Fe and Tb magnetic moments in [Fe(12 nm)/Tb(15 nm)]25 multilayer was got separately with X-ray magnetic circular dichroism (XMCD) measurements at various temperature. The Tb magnetic moments become to twist with increasing the applied magnetic field, as follows. (1) When the applied field H is less than the coercive force HC, Fe and Tb magnetic moments align anti-parallel, Fe moments being parallel to the magnetic field. This would be due to the ordinary exchange coupling between Fe and Tb magnetic moments. (2) H>HC, a twisted magnetic structure appears when the sample temperature is low, particularly lower than 150 K. This magnetic phase could come from the competition among the exchange coupling, the Zeeman energy and the anisotropic energy.  相似文献   

14.
The thermal stability of written bits in a magnetic hard-disk medium has been investigated with a magnetic force microscope (MFM), which was equipped with an in situ heating system capable of heating the medium up to 300 °C. It is shown that both the annealing temperature and the duration have significant effect on the decay of the MFM signal. No signal decay is observed when annealing for 30 min up to temperatures of 200 °C. The MFM signal decays rapidly with increasing temperature, for temperatures over 200 °C. Repeated annealing at 280 °C with a duration below 10 min does not cause any signal decay.  相似文献   

15.
Nickel thin films were deposited on glass substrates at different N2 gas contents using a dc triode sputtering deposition system. Triode configuration was used to deposit nanostructured thin films with preferred orientation at lower gas pressure and at lower substrate temperature compared to the dc diode sputtering system. A gradual evolution in the composition of the films from Ni, Ni(N), to Ni3N was found by X-ray diffraction analysis. The preferred growth orientation of the nanostructured Ni films changed from (1 1 1) to (1 0 0) for 9% N2 at 100 °C. Ni3N films were formed at 23% N2 with a particle size of about 65 nm, while for 0% and 9% of nitrogen, the particles sizes were 60 nm, and 37 nm, respectively, as obtained by atomic force microscopy. Magnetic force microscopy imaging showed that the local magnetic structure changed from disordered stripe domains of about 200 nm for Ni and Ni(N) to a structure without a magnetic contrast, indicating the paramagnetic state of this material, which confirmed the structural transformation from Ni to Ni3N.  相似文献   

16.
We developed a micro-magnetometry with a 2.5 μm spatial resolution based on micro X-ray magnetic circular dichroism (XMCD) technique in order to study magnetic properties of dot arrays for bit-patterned media. This micro-magnetometer was applied to the magnetic characterization of Co–Pt dot arrays fabricated by ion beam etching. As the dot size became small, the intensity of XMCD drastically decreased for dots fabricated by Ga-focused ion beam. This suggested that the dot edges were damaged magnetically by implantation of Ga ions. The damaged width of the dot edge was estimated to be about 13 nm from the decrease in XMCD intensities. This damaged edge width agreed with the ion-implanted area estimated by Monte-Carlo simulation. The less-damaged effect of Ar ion etching was verified by the XMCD measurement of Co–Pt dots with diameter of 20 and 70 nm. It was concluded that ions with inertness, lower energy and smaller atomic number should be used to fabricate dot arrays with an areal density of 1 Tbit/in2.  相似文献   

17.
Magnetic field induced first order antiferromagnetic (AFM) to ferrimagnetic (FRI) transition in polycrystalline Mn1.85Co0.15Sb has been studied using magnetic force microscopy (MFM) at 60 K and up to 8 T magnetic fields. Our MFM studies provide real space visualization of AFM to FRI transition. It shows growth (decay) of FRI phase with increasing (decreasing) magnetic field. The hysteretic behavior and co-existing FRI and AFM phases across the critical field required for FRI-AFM transition in Mn1.85Co0.15Sb are highlighted. This study demonstrates the potential of MFM for studying phase co-existence at high field and low temperatures.  相似文献   

18.
Magnetostatic coupling in arrays of closely spaced magnetic elements is becoming an important issue in the path to the fabrication of spintronic devices. Dense chains of rounded-corners rectangular particles (dots) of lateral size 1025 × 450 nm2, with interdot spacing variable in the range between 55 and 700 nm, have been patterned by deep UV lithography, followed by the lift-off of two permalloy films of thickness 20 and 40 nm. Magneto-optical Kerr effect (MOKE) and magnetic force microscopy (MFM) experiments, together with micromagnetic simulations, were performed to study the dependence of the magnetization configuration on the dipolar coupling. Both MOKE measurements and MFM images clearly show that, at remanence, the magnetic state of isolated particles of thickness 20 nm takes the form of a distorted single domain (C-state or S-State configurations). Instead, when the particle thickness is double (40 nm), closure states characterized by one, two or three vortices occur at remanence. However, when the 40 nm thick dots are placed in chains along the easy axis (head to tail), as the separation is progressively reduced, the single domain state is stabilized at remanence. On the other hand, when the 40 nm thick particles are placed side by side in chains the effect of dipolar interactions is to favour the nucleation of vortex states. For small inter-element separation, there is only one vortex per particle and it has the same chirality in adjacent particles, due to the dipolar interaction. Different from this, for the 20 nm thick samples and sub-100 nm separation, adjacent particles are single-domain but with antiparallel magnetization in neighbour elements, like in an artificial antiferromagnet.  相似文献   

19.
Zn1−xCrxTe (x=0.05) films were prepared by thermal evaporation onto glass substrates. X-ray diffraction (XRD) was used to determine the crystalline quality of the ZnTe:Cr film. Magnetic force microscopy (MFM) investigation has shown a non-uniform distribution of magnetic domains with an average size of 4 nm at room temperature. SQUID measurements have further shown that the non-uniform distribution of domains does not affect the room temperature ferromagnetism of this material. Electron spin resonance spectroscopy (ESR) was done to determine the Cr valence state in the ZnTe lattice. Magnetic circular dichroism (MCD) analysis was used to confirm the ZnCrTe phase contributing to the ferromagnetic behavior.  相似文献   

20.
 使用微波辅助聚合方法制备了单分散单畴Ni纳米球,由MFM发现,尺度分布在100~180 nm的Ni球的一个相关特征是条型磁畴结构。用XRD、TEM、XPS以及EDAX测量了由Ni球进一步制备的NicoreNiOshell高度球型纳米结构。用VSM 和SQUID进一步讨论了其铁磁/反铁磁界面耦合效应,估算了交换耦合场与粒子尺寸的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号