首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
于伟威  于荣梅  程勇军  周雅君 《中国物理 B》2016,25(2):23101-023101
An approximation formula is developed to determine the tune-out wavelengths for the ground states of the alkalinemetal atoms lithium,sodium and cesium from the existing relativistic reduced matrix elements and experimental energies.The first longest tune-out wavelengths for Li,Na,and Cs are 670.971 nm,589.557 nm,and 880.237 nm,respectively.This is in good agreement with the previous high precise results of 670.971626 nm,589.5565 nm,and 880.25 nm from the relativistic all-order many-body perturbation theory(RMBPT) calculation[Phys.Rev.A 84 043401(2011)].  相似文献   

2.
张永慧  唐丽艳  张现周  史庭云 《中国物理 B》2016,25(10):103101-103101
The B-spline configuration-interaction method is applied to the investigations of dynamic dipole polarizabilities for the four lowest triplet states(2~3S,3~3S,2~3P,and 3~3P) of the Li~+ ion.The accurate energies for the triplet states of n~3S,n~3P,and n~3D,the dipole oscillator strengths for 2~3S(3~3S)→n~3P,2~3P(3~3P)→n~3S,and 2~3P(3~3P)→n~3D transitions,with the main quantum number n up to 10 are tabulated for references.The dynamic dipole polarizabilities for the four triplet states under a wide range of photon energy are also listed,which provide input data for analyzing the Stark shift of the Li~+ ion.Furthermore,the tune-out wavelengths in the range from 100 nm to 1.2 μm for the four triplet states,and the magic wavelengths in the range from 100 nm to 600 nm for the 2~3S→3~3S,2~3S→2~3P,and 2~3S→3~3P transitions are determined accurately for the experimental design of the Li~+ ion.  相似文献   

3.
吴晓梅  李承斌  唐永波  史庭云 《中国物理 B》2016,25(9):93101-093101
The dynamic polarizabilities of the 7s and 6d states of Ra~+are calculated using a relativistic core polarization potential method.The magic wavelengths of the 7s_(1/2)–6d_(3/2,5/2)transitions are identified.Comparing to the common radiofrequency(RF) ion traps,using the laser field at the magic wavelength to trap the ion could suppress the frequency uncertainty caused by the micromotion of the ion,and would not affect the transition frequency measurements.The heating rates of the ion and the powers of the laser for the ion trapping are estimated,which would benefit the possible precision measurements based on all-optical trapped Ra+.  相似文献   

4.
5.
The effects of direct Coulomb and exchange interactions on spin states are studied for quantum dots contained in circular and rectangular mesas. For a circular mesa a spin-triplet favored by these interactions is observed at zero and nonzero magnetic fields. We tune and measure the relative strengths of these interactions as a function of the number of confined electrons. We find that electrons tend to have parallel spins when they occupy nearly degenerate single-particle states. We use a magnetic field to adjust the single-particle state degeneracy, and find that the spin-configurations in an arbitrary magnetic field are well explained in terms of two-electron singlet and triplet states. For a rectangular mesa we observe no signatures of the spin-triplet at zero magnetic field. Due to the anisotropy in the lateral confinement single-particle state degeneracy present in the circular mesa is lifted, and Coulomb interactions become weak. We evaluate the degree of the anisotropy by measuring the magnetic field dependence of the energy spectrum for the ground and excited states, and find that at zero magnetic field the spin-singlet is more significantly favored by the lifting of level degeneracy than by the reduction in the Coulomb interaction. We also find that the spin-triplet is recovered by adjusting the level degeneracy with magnetic field. Received: 14 April 2000 / Accepted: 17 April 2000 / Published online: 6 September 2000  相似文献   

6.
Shell phenomena in small quantum dots with a few electrons under a perpendicular magnetic field are discussed within a simple model. It is shown that various kinds of shell structures, which occur at specific values for the magnetic field lead to a disappearance of the orbital magnetization for particular magic numbers for noninteracting electrons in small quantum dots. Including the Coulomb interaction between two electrons, we found that the magnetic field gives rise to dynamical symmetries of a three-dimensional axially symmetric two-electron quantum dot with a parabolic confinement. These symmetries manifest themselves as near-degeneracy in the quantum spectrum at specific values of the magnetic field and are robust at any strength of the electron-electron interaction. A remarkable agreement between experimental data and calculations exhibits the important role of the thickness for the two-electron quantum dot for analysis of ground state transitions in a perpendicular magnetic field. The text was submitted by the author in English.  相似文献   

7.
We have developed simple wave functions for two- and three-electron atoms and ions, which have the correct structure when one of the electrons is far away, or when two of the particles are close to each other. These essentially parameter-free wave functions allow us to deduce fairly accurate values for the energies, , for multipolar polarizabilities of two-electron atoms and ions, and for the coefficients of the asymptotic density. Received: 5 August 1998 / Received in final form: 27 November 1998  相似文献   

8.
We study the spin-flip process from the first excited state to the ground state due to the spin-phonon coupling in a two-electron quantum dot in the presence of a magnetic field. We give several possible relaxation channels before and after the crossing of the Zeeman sublevels. Our results show that the Coulomb interactions between the electrons of different channels play quite different roles and thus inducing different spin relaxation behaviors.  相似文献   

9.
We have developed a simple model potential with a hard core and the correct large-r Coulombic behaviour, to describe the interaction of an electron with a closed shell. One has an exact, analytic ground state wave function for this potential. This potential is used to develop two-electron perturbed and unperturbed wave functions, with the correct asymptotic behaviour and cusp conditions. These wave functions allow us to obtain accurate values for the two-electron energies, polarisabilities, hyperpolarisabilities, and dispersion coefficients of alkaline earth sequences. Many of these results are the only ones available in the literature. Received 29 July 1999 and Received in final form 16 November 1999  相似文献   

10.
We investigate the configurations, electronic structures, and magnetic ordering of MnN (N = 2-13) clusters based on all-electron density functional theory. The Jahn-Teller effect plays an important role in determining the ground state of certain geometries. The magnetic ordering of the MnN dusters transits from ferromagnetic ordering for the smallest ( N = 2, 3) dusters to a near degeneracy state including ferromagnetic and ferrimagnetic ordering in the vicinity of N = 4-6 and to a clear ferrimagnetic ordering at N = 7 or beyond. N = 6 and 10 are the magic numbers for neutrai MnN (N = 2-13) dusters.  相似文献   

11.
Ionization energies of beryllium-like ions for Z = 26 - 36 in hot ana aense plasmas (ne=10^22 -10^24 cm^-3,kT= 500 - 2000 eV) are obtained by using an approach developed for electronic structure and transition property of ions in hot and dense plasmas based on the multi-configuration Dirac-Fock model. Influence of the plasma environment is considered by introducing a correction to the one-electron potential to account for the screening of the ionized electrons. This correction is calculated from the ionized electron micro-space distribution, which is obtained based on an "average atom model for the temperature and density-dependent average ionization of atoms in plasmas. Comparison between the present and the ion sphere models is made to display the significance of the ionized electron micro-space distribution.  相似文献   

12.
Yuan-Fei Wei 《中国物理 B》2022,31(8):83102-083102
The dynamic polarizabilities of ${\rm 3s}^2\,^1{\rm S}_0$ and ${\rm 3s}{\rm 3p}\,^3{\rm P}_0^{\rm o}$ states of Al$^+$ are calculated using the hybrid configuration interaction and many-body perturbation theory method, and multiconfiguration Dirac-Hartree-Fock method in this work. Five ultraviolet magic wavelengths for the Al$^+$ clock transition ${\rm 3s}^2\,^1{\rm S}_0$-${\rm 3s3p}\,^3{\rm P}_0^{\rm o}$ are predicted. Although the suitable lasers are not available presently, the potential precision measurement on these magic wavelengths for the Al$^+$ clock transition would be used to extract the ratios of several certain transition matrix elements with high accuracy, and then help to improve the precision and reliability of the estimate of the BBR shift of the Al$^+$ clock transition. The differential dynamic polarizabilities at certain wavelengths are evaluated, which are useful to assess the ac Stark shift of the Al$^+$ clock transition frequency and helpful in the clock experiments to suppress the ac Stark shift of the clock transition as possible as it can.  相似文献   

13.
Wavelength-dependent AC Stark shifts and magic wavelengths of the terahertz clock transitions between the metastable triplet states 6s5d3D1 and 6s5d3D2are investigated with considering the optical lattice trapping of barium atoms with the linearly polarized laser. The trap depths and the slopes of light shift difference with distinct magic wavelengths of the optical lattices are also discussed in detail. Several potentially suitable working points for the optical lattice trapping laser are recommended and selected from these magic wavelengths.  相似文献   

14.
We demonstrate numerically that proton-proton (pp scattering observables can be determined directly by standard short-range methods using a screened pp Coulomb force without renormalization. In the examples the appropriate screening radii are given. We also numerically investigate solutions of the 3-dimensional Lippmann-Schwinger (LS) equation for a screened Coulomb potential alone in the limit of large screening radii and confirm analytically predicted properties for off-shell, half-shell and on-shell Coulomb t -matrices. These 3-dimensional solutions will form a basis for a novel approach to include the pp Coulomb interaction into the 3N Faddeev framework.  相似文献   

15.
We report on the Lamb-Dicke spectroscopy of the doubly forbidden (6s(2))(1)S(0)?(6s6p)(3)P(0) transition in (199)Hg atoms confined to a vertical 1D optical lattice. With lattice trapping of ?10(3) atoms and a 265.6 nm probe laser linked to the LNE-SYRTE primary frequency reference we have determined the center frequency of the transition for a range of lattice wavelengths and at two lattice trap depths. We find the Stark-free (magic) wavelength to be 362.53(0.21) nm-essential knowledge for future use of this line in a clock with anticipated 10(-18) range accuracy. We also present evidence of the laser excitation of a Wannier-Stark ladder of states in a lattice of well depth 10E(R).  相似文献   

16.
Motivated by current interest in strongly correlated quasi-one-dimensional (1D) Luttinger liquids subject to axial confinement, we present a novel density-functional study of few-electron systems confined by power-low external potentials inside a short portion of a thin quantum wire. The theory employs the 1D homogeneous Coulomb liquid as the reference system for a Kohn-Sham treatment and transfers the Luttinger ground-state correlations to the inhomogeneous electron system by means of a suitable local-density approximation (LDA) to the exchange-correlation energy functional. We show that such 1D-adapted LDA is appropriate for fluid-like states at weak coupling, but fails to account for the transition to a “Wigner molecules” regime of electron localization as observed in thin quantum wires at very strong coupling. A detailed analyzes is given for the two-electron problem under axial harmonic confinement.  相似文献   

17.
We investigate the magic wavelengths of the trapping laser for 6S1/2 - 6P3/2 Of the Cs atom in a region where the optical shift between two different states can be elirninated. For fine levels and linear polarized laser they are 930.4 nrn and 937.2nm. The magic wavelengths range from 927. 7nrn to 945.0nm for circle-polarized perturbing laser. Effects of nuclear spin, the hyper-fine Zeernan levels, and the polarization of the light, which generate different magic wavelengths, are further discussed.  相似文献   

18.
19.
We present a non-variational approach to the solution of the quantum three-body problem, based on the decomposition of the three-body Laplacian operator through the use of its intrinsic symmetries. With the judicious choice of angular momentum eigenfunctions, a clean separation of spatial rotation from kinematic rotation is achieved, leading to a finite set of coupled PDEs in terms of the canonical variables. Numerical implementation of this approach to the three-body Coulomb problem is shown to yield accurate ground state eigenvalues and wavefunctions, together with those of low-lying excited states. We present results on some typical three-body systems. In particular, the eigenvalues and wavefunctions of the even-parity state of the negative hydrogen ion are detailed for the first time. The issue of computational efficiency is also briefly discussed.  相似文献   

20.
In recent years significant experimental advances in nano-scale fabrication techniques and in available light sources have opened the possibility to study a vast set of novel light-matter interaction scenarios, including strong coupling cases. In many situations nowadays, classical electromagnetic modeling is insufficient as quantum effects, both in matter and light, start to play an important role. Instead, a fully self-consistent and microscopic coupling of light and matter becomes necessary. We provide here a critical review of current approaches for electromagnetic modeling, highlighting their limitations. We show how to overcome these limitations by introducing the theoretical foundations and the implementation details of a density-functional approach for coupled photons, electrons, and effective nuclei in non-relativistic quantum electrodynamics. Starting point of the formalism is a generalization of the Pauli–Fierz field theory for which we establish a one-to-one correspondence between external fields and internal variables. Based on this correspondence, we introduce a Kohn-Sham construction which provides a computationally feasible approach for ab-initio light-matter interactions. In the mean-field limit, the formalism reduces to coupled Ehrenfest–Maxwell–Pauli–Kohn–Sham equations. We present an implementation of the approach in the real-space real-time code Octopus using the Riemann–Silberstein formulation of classical electrodynamics to rewrite Maxwell's equations in Schrödinger form. This allows us to use existing very efficient time-evolution algorithms developed for quantum-mechanical systems also for Maxwell's equations. We show how to couple the time-evolution of the electromagnetic fields self-consistently with the quantum time-evolution of the electrons and nuclei. This approach is ideally suited for applications in nano-optics, nano-plasmonics, (photo) electrocatalysis, light-matter coupling in 2D materials, cases where laser pulses carry orbital angular momentum, or light-tailored chemical reactions in optical cavities just to name but a few.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号