首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Moderate or Intense Low-oxygen Dilution (MILD) combustion has drawn increasing attention as it allows to avoid the thermo-chemical conditions prone to the formation of pollutant species while ensuring high energy efficiency and fuel flexibility. MILD combustion is characterized by a strong competition between turbulent mixing and chemical kinetics so that turbulence-chemistry interactions are naturally strengthened and unsteady phenomena such as local extinction and re-ignition may occur. The underlying physical mechanisms are not fully understood yet and the validation of combustion models featuring enhanced predictive capabilities is required. Within this context, high-fidelity data from Direct Numerical Simulation (DNS) represent a great opportunity for the assessment and the validation of combustion closure formulations. In this study, the performance of the Partially Stirred Reactor (PaSR) combustion model in MILD conditions is a priori assessed on Direct Numerical Simulations (DNS) of turbulent combustion of MILD mixtures in a cubical domain. Modeled quantities of interest, such as heat release rate and reaction rates of major and minor species, are compared to the corresponding filtered quantities extracted from the DNS. Different submodels for the key model parameters, i.e., the chemical time scale τc and the mixing time scale τmix, are considered and their influence on the results is evaluated. The results show that the mixing time scale is the leading scale in the investigated cases. The best agreement with the DNS data regarding the prediction of heat release rate and chemical source terms is achieved by the PaSR model that employs a local dynamic approach for the estimation of the mixing time scale. An overestimation of the OH species source terms occurs in limited zones of the computational domain, characterized by low heat release rates.  相似文献   

2.
A neural network (NN) aided model is proposed for the filtered reaction rate in moderate or intense low-oxygen dilution (MILD) combustion. The framework of the present model is based on the partially stirred reactor (PaSR) approach, and the fraction of the reactive structure appearing in the PaSR is predicted using different NN’s, to consider both premixed and non-premixed conditions while allowing the use of imbalanced training data between premixed and non-premixed combustion direct numerical simulation (DNS) data. The key ingredient in the present model is the use of local combustion mode prediction performed by using another NN, which is developed in a previous study. The trained model was then assessed by using two unknown combustion DNS cases, which yields much higher dilution level (more intense MILD condition) and higher Karlovitz number than the DNS cases used as training data. The model performance assessment has been carried out by means of the Pearson’s correlation coefficient and mean squared error. For both the present model and zeroth-order approximated reaction rate, the correlation coefficient with the target values shows relatively high values, suggesting that the trend of predicted field, by the present model and zeroth-order approximation, is well correlated with the actual reaction rate field. This suggests that the use of PaSR equation is promising if the fraction of the reactive structure is appropriately predicted, which is the objective in the present study. On the other hand, substantially lower mean squared error is observed for a range of filter sizes for the present model than that for the zeroth-order approximation. This suggests that the present filtered reaction rate model can account for the SGS contribution reasonably well.  相似文献   

3.
Direct Numerical Simulations (DNS) data of Moderate or Intense Low-oxygen Dilution (MILD) combustion are analysed to identify the contributions of the autoignition and flame modes. This is performed using an extended Chemical Explosive Mode Analysis (CEMA) which accounts for diffusion effects allowing it to discriminate between deflagration and autoignition. This analysis indicates that in premixed MILD combustion conditions, the main combustion mode is ignition for all dilution and turbulence levels and for the two reactant temperature conditions considered. In non-premixed conditions, the preponderance of the ignition mode was observed to depend on the axial location and mixture fraction stratification. With a large mixture fraction lengthscale, ignition is more preponderant in the early part of the domain while the deflagrative mode increases further downstream. On the other hand, when the mixture fraction lengthscale is small, sequential autoignition is observed. Finally, the various combustion modes are observed to correlate strongly with mixture fraction where lean mixtures are more likely to autoignite while stoichiometric and rich mixtures are more likely to react as deflagrative structures.  相似文献   

4.
We proposed a theoretical basis for Moderate or Intense Low-oxygen Dilution (MILD) coal combustion based on the turbulent scalar energy spectra. This is motivated by the hypothesis that smallest scalar mixing length scales should be on the order of the particle size or smaller to ensure that mixing can occur to prevent formation of diffusion flames. Our proposed criterion is evaluated using several experimental datasets from the literature for coal combustion in both MILD and traditional combustion regimes. The experimental results confirm that the smallest mixing length scales should be of the order of or smaller than the particle diameter, ηmix?dp, to breakup the heat and mass transfer boundary layers around particles in MILD coal combustion. Results indicate that poor mixing of species with small Schmidt numbers around small particles leads to the high luminous intensity in the reactor. The effects of inlet velocity and jet diameter on the mixing length scales are analyzed. Higher inlet velocity and smaller jet diameter are expected to reach MILD regime. The proposed criterion can be used to guide experimental design to achieve MILD conditions for coal combustion.  相似文献   

5.
Transported probability density function (TPDF) simulation with sensitivity analysis has been conducted for turbulent non-premixed CH4/H2 flames of the jet-into-hot-coflow (JHC) burner, which is a typical model to emulate moderate or intense low oxygen dilution combustion (MILD). Specifically, two cases with different levels of oxygen in the coflow stream, namely HM1 and HM3, are simulated to reveal the differences between MILD and hot-temperature combustion. The TPDF simulation well predicts the temperature and species distributions including those of OH, CO and NO for both cases with a 25-species mechanism. The reduced reaction activity in HM1 as reflected in the peak OH concentration is well correlated to the reduced oxygen in the coflow stream. The particle-level local sensitivities with respect to mixing and chemical reaction further show dramatic differences in the flame characteristics. HM1 is less sensitive to mixing and reaction parameters than HM3 due to the suppressed combustion process. Specifically, for HM1 the sensitivities to mixing and chemical reactions have comparable magnitude, indicating that the combustion progress is controlled by both mixing and reaction in MILD combustion. For HM3, there is however a change in the combustion mode: during the flame initialization, the combustion progress is more sensitive to chemical reactions, indicating that finite-rate chemistry is the controlling process during the autoignition process for flame stabilization; at further downstream where the flame has established, the combustion progress is controlled by mixing, which is characteristic of nonpremixed flames. An examination of the particles with the largest sensitivities reveals the difference in the controlling mixtures for flame stabilization, namely, the stoichiometric mixtures are important for HM1, whereas, fuel-lean mixtures are controlling for HM3. The study demonstrates the potential of TPDF simulations with sensitivity analysis to investigate the effects of finite-rate chemistry on the flame characteristics and emissions, and reveal the controlling physio-chemical processes in MILD combustion.  相似文献   

6.
In many numerical scientific papers, MILD combustion is defined on the basis of the disappearance of extinction phenomena while varying mixture dilution levels, through the identification of the condition where ignition and extinction collapse in an unique event. Albeit with numerous contributions in elementary reactor configurations (Continuous Stirred Flow Reactors, Opposed-Diffusion flames), operating conditions to achieve this noticeable circumstance do not properly match with experimental evidences, since they lead to extreme mixture dilution levels (higher than 99% for CH4). In addition, many works suggest the occurrence of extinctions phenomena or instabilities under MILD conditions, symptomatic of extinction/re-ignition phenomena. Simulations in an adiabatic CSTR for CH4/O2/N2 mixtures, varying the N2 content, were realized with the focus to analyze the system behavior through hysteresis. Results show different hysteresis behaviors from “air” to diluted conditions, demonstrating the occurrence of the condition Text=Tign is not a strict constraint for MILD combustion systems. In addition, the “unstable” branch has characteristic temperatures lower than the ones related to both the ignition and extinction events, enlarging the opportunity to stabilize MILD combustion processes. These results pave the way to the reconsideration of peculiar aspects of MILD combustion processes.  相似文献   

7.
The simulation of turbulent flames fully resolving the smallest flow scales and the thinnest reaction zones goes along with specific requirements, which are discussed from dimensionless numbers useful to introduce the generic context in which direct numerical simulation (DNS) of turbulent flames is performed. Starting from this basis, the evolution of the DNS landscape over the past five years is reviewed. It is found that the flow geometries, the focus of the studies and the overall motivations for performing DNS have broadened, making DNS a standard tool in numerical turbulent combustion. Along these lines, the emerging DNS of laboratory burners for turbulent flame modeling development is discussed and illustrated from DNS imbedded in Large Eddy Simulation (LES) and flow resolved simulation of bluff-body flames. The literature shows that DNS generated databases constitute a fantastic playground for developing and testing a large spectrum of promising machine learning methods for the control and the optimisation of combustion systems, including novel numerical approaches based on the training of neural networks and which can be evaluated in DNS free from sub-model artefacts. The so-called quasi-DNS is also progressively entering the optimisation loop of combustion systems, with the application of techniques to downsize real combustion devices in order to perform fully resolved simulations of their complex geometries. An example of such study leading to the improvement of an incinerator efficiency is reported. Finally, numbers are given relative to the carbon footprint of the generation of DNS databases, motivating the crucial need for community building around database sharing.  相似文献   

8.
Moderate or intense low oxygen dilution (MILD) combustion has been the focus of a range of fundamental experimental and numerical studies. Reasonable agreement between experimental and numerical investigations, however, requires finite-rate chemistry models and, often, ad hoc model adjustment. To remedy this, an adaptive eddy dissipation concept (EDC) combustion model has previously been developed to target conditions encountered in MILD combustion; however, this model relies on a simplified, pre-defined assumption about the combustion chemistry. The present paper reports a generalised version of the modified EDC model without the need for an assumed, single-step chemical reaction or ad hoc coefficient tuning. The results show good agreement with experimental measurements of two CH4/H2 flames in hot coflows, showing improvements over the standard EDC model as well as the previously published modified EDC model. The updated version of the EDC model also demonstrates the capacity to reproduce the downstream transition in flame structure of a MILD jet flame seen experimentally, but which has previously proven challenging to capture computationally. Analyses of the previously identified dominant heat-release reactions provide insight into the structural differences between a conventional autoignitive flame and a flame in the MILD combustion regime, whilst highlighting the requirement for a generalised EDC combustion model.  相似文献   

9.
Turbulent flames are intrinsically curved. In the presence of preferential diffusion, curvature effects either enhance or suppress molecular diffusion, depending on the diffusivity of the species and the direction of the flame curvature. When a tabulated chemistry type of modeling is employed, curvature-preferential diffusion interactions have to be taken into consideration in the construction of manifolds. In this study, we employ multistage stage flamelet generated manifolds (MuSt-FGM) method to model autoigniting non-premixed turbulent flames with preferential diffusion effects included. The conditions for the modeled flame are in MILD combustion regime. To model the above-mentioned curvature-preferential diffusion interactions, a new mixture fraction which has a non-unity Lewis number is defined and used as a new control variable in the manifold generation. 1D curved flames are simulated to create the necessary flamelets. The resulting MuSt-FGM tables are used in the simulation of 1D laminar flames, and then also applied to turbulent flames using 2D direct numerical simulations (DNS). It was observed that when the curvature effects are included in the manifold, the MuSt-FGM results agree well with the detailed chemistry results; whereas the results become unsatisfactory when the curvature effects are ignored.  相似文献   

10.
The effects of hot combustion product dilution in a pressurised kerosene-burning system at gas turbine conditions were investigated with laminar counterflow flame simulations. Hot combustion products from a lean (φ = 0.6) premixed flame were used as an oxidiser with kerosene surrogate as fuel in a non-premixed counterflow flame at 5, 7, 9 and 11 bar. Kerosene-hot product flames, referred to as ‘MILD’, exhibit a flame structure similar to that of kerosene–air flames, referred to as ‘conventional’, at low strain rates. The Heat Release Rate (HRR) of both conventional and MILD flames reflects the pyrolysis of the primary and intermediate fuels on the rich side of the reaction zone. Positive HRR and OH regions in mixture fraction space are of similar width to conventional kerosene flames, suggesting that MILD flames are thin fronts. MILD flames do not exhibit typical extinction behaviour, but gradually transition to a mixing solution at very high rates of strain (above A = 160, 000 s?1 for all pressures). This is in agreement with literature that suggests heavily preheated and diluted flames have a monotonic S-shaped curve. Despite these differences in comparison with kerosene–air flames, MILD flames follow typical trends as a function of both strain and pressure. Further still, the peak locations of the overlap of OH and CH2O mass fractions in comparison with the peak HRR indicate that the pixel-by-pixel product of OH- and CH2O-PLIF signals is a valid experimental marker for non-premixed kerosene MILD and conventional flames.  相似文献   

11.
Large eddy simulations (LES) are employed to investigate the effect of the inlet turbulence intensity on the H2/CH4 flame structure in a hot and diluted co-flow stream which emulates the (Moderate or Intense Low-oxygen Dilution) MILD combustion regime. In this regard, three fuel inlet turbulence intensity profiles with the values of 4%, 7% and 10% are superimposed on the annular mixing layer. The effects of these changes on the flame structure under the MILD condition are studied for two oxygen concentrations of 3% and 9% (by mass) in the oxidiser stream and three hot co-flow temperatures 1300, 1500 and 1750 K. The turbulence-chemistry interaction of the numerically unresolved scales is modelled using the (Partially Stirred Reactor) PaSR method, where the full mechanism of GRI-2.11 represents the chemical reactions. The influences of the turbulence intensity on the flame structure under the MILD condition are studied by using the profile of temperature, CO and OH mass fractions in both physical and mixture fraction spaces at two downstream locations. Also, the effects of this parameter are investigated by contours of OH, HCO and CH2O radicals in an area near the nozzle exit zone. Results show that increasing the fuel inlet turbulence intensity has a profound effect on the flame structure particularly at low oxygen mass fraction. This increment weakens the combustion zone and results in a decrease in the peak values of the flame temperature and OH and CO mass fractions. Furthermore, increasing the inlet turbulence intensity decreases the flame thickness, and increases the MILD flame instability and diffusion of un-burnt fuel through the flame front. These effects are reduced by increasing the hot co-flow temperature which reinforces the reaction zone.  相似文献   

12.
直接数值模拟(DNS),大涡模拟(LES)与雷诺时均模拟(RANS)是数值模拟燃烧流动的三大主要方法,而射流扩散火焰在燃烧理论,实验研究与数值模拟中都扮演着十分重要的角色,本文采用完全可压缩的Naive-Stokes方程,对喷口直径为D=1 mm,Re=2000的射流扩散火焰进行了直接数值模拟.本文首先分析了冷态时H_2,O_2的混合,发现燃料与氧气在流向长度大于6D后的区域混合得十分充分.随后本文分析了燃烧后的统计特性,主要包括速度场,密度,温度以及主要组分与混合分数的分布,并将DNS结果与实验结果进行对比分析.  相似文献   

13.
Subgrid-scale (SGS) parameterization and method for calculating filtered reaction rate are critical components of an accurate large-eddy simulation (LES) of turbulent flames. In this study, we integrate gradient-type structural SGS models with a partially stirred reactor approach by using detailed chemical kinetics to simulate a turbulent methane/hydrogen jet flame under moderate or intense low-oxygen dilution (MILD) conditions. The study examines two oxygen dilution levels. The framework is assessed through a systematic and comprehensive comparison of temperature, and mass fractions of major and minor species with experimental data and other reference simulation results. Overall, the statistics of the combustion field show excellent agreement with measurements at different axial locations, and a significant improvement compared to some previous simulations. It suggests that the proposed nonlinear LES framework is able to accurately model MILD combustion with reasonable computational cost.  相似文献   

14.
A cylindrical confined combustor operating under MILD condition is investigated using LES. The combustion and its interaction with turbulence are modeled using two reactor based models, PaSR and EDC. Results show that the Partially Stirred Reactor (PaSR) model yields improved estimation for mean temperature and species mole fractions compared to Eddy Dissipation Concept (EDC). LES data are analysed using advanced post-processing methods such as the chemical Tangential Stretching Rate (TSR), balance analysis and local Principle Component (PCA) analysis. TSR can identify chemical explosive (ignition-like) and contractive (burnt) regions. With the balance analysis of the convective, diffusive and reactive terms in temperature equation, regions with substantial heat release coming from ignition or flame are identified. The local PCA analysis classifies the whole domain into clusters (regions with specific features) and provides the leading species in each cluster. The three analyses correlate well with one another and it is observed that the most chemically active region locates upstream (in the near-field). Also, both autoignition and flame-like structures play equally important roles in MILD combustion.  相似文献   

15.
In this paper, the importance of fluctuations in flow field parameters is studied under MILD combustion conditions. In this way, a turbulent non-premixed CH4+H2 jet flame issuing into a hot and deficient co-flow air is modeled using the RANS Axisymmetric equations. The modeling is carried out using the EDC model to describe the turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. Results illustrate that although the fluctuations in temperature field are small and the reaction zone volume are large in the MILD regime, the fluctuations in temperature and species concentrations are still effective on the flow field. Also, inappropriate dealing with the turbulence effect on chemistry leads to errors in prediction of temperature up to 15% in the present flame. By decreasing of O2 concentration of hot co-flow air, the effect of fluctuations in flow field parameters on flame characteristics are still significant and its effect on species reaction rates does not decrease. On the other hand, although decreasing of jet inlet Reynolds number at constant inlet turbulence intensity addresses to smaller fluctuations in flow filed, it does not lead to lower the effect of turbulence on species distribution and temperature field under MILD combustion conditions.  相似文献   

16.
The statistical behaviour and closure of sub-grid scalar fluxes in the context of turbulent premixed combustion have been assessed based on an a priori analysis of a detailed chemistry Direct Numerical Simulation (DNS) database consisting of three hydrogen-air flames spanning the corrugated flamelets (CF), thin reaction zones (TRZ) and broken reaction zones (BRZ) regimes of premixed turbulent combustion. The sub-grid scalar fluxes have been extracted by explicit filtering of DNS data. It has been found that the conventional gradient hypothesis model is not appropriate for the closure of sub-grid scalar flux for any scalar in the context of a multispecies system. However, the predictions of the conventional gradient hypothesis exhibit a greater level of qualitative agreement with DNS data for the flame representing the BRZ regime. The aforementioned behaviour has been analysed in terms of the properties of the invariants of the anisotropy tensor in the Lumley triangle. The flames in the CF and TRZ regimes are characterised by a pronounced two-dimensional anisotropy due to strong heat release whereas a three-dimensional and more isotropic behaviour is observed for the flame located in the BRZ regime. Two sub-grid scalar flux models which are capable of predicting counter-gradient transport have been considered for a priori DNS assessment of multispecies systems and have been analysed in terms of both qualitative and quantitative agreements. By combining the latter two sub-grid scalar flux closures, a new modelling strategy is suggested where one model is responsible for properly predicting the conditional mean accurately and the other model is responsible for the correlations between model and unclosed term. Detailed physical explanations for the observed behaviour and an assessment of existing modelling assumptions have been provided. Finally, the classical Bray–Moss–Libby theory for the scalar flux closure has been extended to address multispecies transport in the context of large eddy simulations.  相似文献   

17.
The global energy shift towards the exploitation of Renewable Energy Sources requires the development of proper energy storage and back-up technologies to deal with their intermittency and seasonality. Renewable Energy chemical storage offers the possibility of efficiently storing large amounts of energy for long time. On the other hand, ammonia is increasingly considered a feasible alternative to the use of hydrogen, due to the existence of already well assessed production technologies and transport infrastructures. However, the exploitation of ammonia as an energy carrier poses some relevant challenges. The most relevant ones concern combustion stability and NOx emissions, when ammonia is burned in traditional conditions. A promising approach to ensure combustion stability while containing NOx emissions relies on the shift from traditional to new combustion modes. MILD Combustion has been proven as a reliable alternative to reach these targets. At the same time, water addition to reactants is a well-known strategy that promote DeNOx routes in fossil fuel combustion.In this work, combustion of ammonia-air mixtures assisted by water is studied in a cyclonic burner exercised under MILD operative conditions, to evaluate the effect of water addition on NOx emissions and process stability. The analyses were carried out in premixed and non-premixed feeding conditions.Results highlighted that water addition to the reactant mixture may represent a very simple and efficient solution in determining the reduction of NOx emissions in ammonia combustion, especially in fuel-lean conditions.Moreover, the comparison between premixed and non-premixed configuration shows that it is possible to enhance the process performance through a simultaneous optimization of the burner internal flow-field and reactants injection strategies.  相似文献   

18.
This study focuses on the modelling of turbulent lifted jet flames using flamelets and a presumed Probability Density Function (PDF) approach with interest in both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes of the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for a turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction Z and progress variable c, including their statistical correlation, are obtained using a copula method, which is also validated using the DNS data. The statistically independent PDFs are found to be generally inadequate to represent the joint PDFs from the DNS data. The effects of Zc correlation and the contribution from the non-premixed combustion mode on the flame lift-off height are studied systematically by including one effect at a time in the simulations used for a posteriori validation. A simple model including the effects of chemical kinetics and scalar dissipation rate is suggested and used for non-premixed combustion contributions. The results clearly show that both Zc correlation and non-premixed combustion effects are required in the premixed flamelets approach to get good agreement with the measured flame lift-off heights as a function of jet velocity. The flame brush structure reported in earlier experimental studies is also captured reasonably well for various axial positions. It seems that flame stabilisation is influenced by both premixed and non-premixed combustion modes, and their mutual influences.  相似文献   

19.
The strategy to stabilize distributed combustion regimes adopting cyclonic flow fields has been proven to be challenging. In fact, the establishment of a toroidal flow field within a combustion chamber may ensure the recirculation of mass and sensible enthalpy required to simultaneously dilute the fresh reactants and increase the temperature above the autoignition one. The combination of reactants dilution and preheating may greatly increase system energy efficiency and lower pollutants production producing very peculiar combustion regime (named MILD Combustion). At the same time this strategy can be compromised if the sensible enthalpy is not high enough to promote the auto-ignition process of diluted mixtures. This may happen either because of an inefficient recirculation system or due to a too low calorific fuel. The paper aims at exploiting the performance of a small-size cyclonic burner for a conventional fuel (CH4) and a low calorific fuel (synthetic biogas) through the characterization of the process stabilization and pollutant emissions as a function of the mixture equivalence ratio and the nominal thermal power of the inlet mixture (from 2 to 10?kW), with the aim of identifying the optimal operating condition of the system. Results suggest that the system has to be exercised with mixtures with compositions slightly under the stoichiometric conditions and in a well identified temperature range to minimize both NOx and CO emission. The burner can be easily exercised also with low calorific fuels for higher thermal powers according to the low LHV. However, it results that an efficient recirculation of the exhausts produces a robust MILD combustion condition also when low calorific fuels are used.  相似文献   

20.
DNS is performed for a statistically one dimensional layer of a spray region resembling diesel engine conditions. The group and collective combustion regimes are identified according to the ratio of the chemical and transport time scales for a single droplet. The statistics in group combustion are similar with those in gas phase combustion. The collective combustion regime involves interspersed rich regions with different dissipation characteristics. Reasonable agreements are shown with the scaled AMC model and the linear evaporation model in the ranges of meaningful probability. Initially the evaporation terms are dominant in the budgets of the conditional enthalpy equation. After ignition the chemical reaction term becomes dominant to be balanced by the time rate of change term. For modeling turbulent spray combustion it may not be essential to consider detailed micro structures around each droplet, unless in the droplet combustion regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号