首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
无先验水下主动偏振成像方法能够实现目标信息光偏振度和后向散射光偏振度的自动获取,但该方法在反演过程中仅追寻高对比度这一单一指标,有时会导致自动获取的两项偏振反演参数过于相近,使图像复原效果不理想,且常伴有大量噪声.针对上述仅追求单一指标导致复原图像质量不理想的问题,本文提出一种基于双层多指标优化的水下偏振成像方法.首先,第1层以互信息和对比度为目标函数,基于多目标遗传优化算法自动获取偏振参数最优解集;其次,选择信息熵为第2层目标函数,遍历最优解集,获取偏振参数最终解,并将其代入成像模型,获取复原图像;最终,根据所获偏振参数之差,选取适当数字图像处理手段进一步提升复原图像质量.实验结果表明,无论背景区域存在与否,无论目标物偏振度高低,本方法均能有效增强图像细节,平衡各项图像质量评价指标,得到综合质量较高的复原图像.  相似文献   

2.
多尺度水下偏振成像方法   总被引:3,自引:0,他引:3       下载免费PDF全文
韩平丽  刘飞  张广  陶禹  邵晓鹏 《物理学报》2018,67(5):54202-054202
水下偏振成像技术利用散射光偏振特性能够有效提高水下成像质量,在水下目标探测和识别领域具有重要应用价值.针对该技术在背景散射光和目标信息光分离时由于噪声放大现象导致重建图像质量受限的问题,提出多尺度水下偏振成像方法.该方法利用图像分层处理思想,结合小波变换的多尺度特性,对体现图像高对比度的基础层和低对比度但细节信息丰富的细节层分别进行处理,重建高对比度、高信噪比的清晰场景图像.实验结果表明,多尺度水下偏振成像方法不仅能够大幅提高对比度,复原图像细节信息,而且能够有效抑制放大噪声,提高重建图像的信噪比,在水下偏振成像领域具有良好应用前景.  相似文献   

3.
水体中悬浮粒子对光的散射导致浑浊水下成像质量下降。偏振光学成像技术可基于偏振信息分离散射光和信号光,是浑浊水下成像的有效方法。然而,现有的水下偏振成像技术主要从空域分离散射光和信号光,对于散射光的抑制效果较为有限。利用散射光和信号光在频域的差异性,基于对偏振图像频谱信息的处理实现了对后向散射光的有效抑制,从而实现了成像清晰度的显著提升。在不同浑浊程度水体环境下对于不同物体开展了多组实验,实验结果表明,所提方法相对于传统的水下偏振成像方法可更好地抑制后向散射光和凸显物体信号光,最终实现在浑浊水体环境下的清晰成像,尤其对于高浑浊水体,成像清晰度提升效果明显。  相似文献   

4.
赵永刚  孙春生 《应用光学》2022,43(5):967-972
水下偏振成像技术是目前水下成像研究的热点,由于自然光在水中衰减大,水下成像系统多采用主动照明方式。针对分焦平面偏振成像系统中偏振照明光源与偏振探测像元偏振方向不匹配引起采集图像偏振信息存在的偏差,进而影响目标图像增强质量的问题,提出了一种分焦平面偏振成像系统光源标定方法。阐述了偏振光源的标定原理,然后给出偏振光源标定的实施步骤,最后采用偏振去雾算法和图像质量评价方法对标定前后的水下目标图像进行了图像增强和图像质量评价。评价结果表明,标定后的增强图像质量优于未标定的增强图像质量,平均梯度最大提升了2.48倍。该标定方法简单有效,实用性强,适用于分焦平面偏振成像系统偏振光源标定。  相似文献   

5.
针对浑浊水体偏振成像时由于强散射作用导致的背景散射光分布不均匀且目标信息被淹没,无法有效解译,难以实现清晰化成像的问题,提出基于稀疏低秩特性的水下非均匀光场偏振成像技术.该技术利用散射光场中偏振信息的共模抑制特性消除非均匀性,结合水下散射光场中背景信息纹理单一、信息相关性高以及目标信息空间占比小的特点,建立偏振域的稀疏-低秩信息分析处理模型,有效分离目标和背景信息,重建高对比度清晰目标图像.实验结果表明,基于稀疏低秩特性的水下非均匀光场偏振成像技术不仅能够有效地提升浑浊水下图像的对比度,复原细节信息,而且能够有效地抑制非均匀强散射,在水下偏振成像领域具有良好的应用前景.  相似文献   

6.
为研究具备不同偏振特性的目标对水下主动偏振成像系统分辨率的影响,设计了一套基于LED辅助照明的偏振成像实验系统。该系统在LED光源和成像设备前加入高偏振消光比的偏振光学元件,并使用两种不同表面偏振特性的目标,实现对水下环境的成像系统的特征图像获取。再利用倾斜刃边法处理实验图像,提取调制传递函数(MTF)。通过比较不同实验环境下,正交偏振成像和偏振差分成像的MTF值,得出偏振技术有助于抑制水下主动成像系统的前向散射光,提高系统整体分辨率的结论。针对不同性质的目标,应使用恰当的处理方式来获得高分辨率的图像。同时,该结论对线偏振和圆偏振照明条件皆适用。  相似文献   

7.
《光学学报》2021,41(3):216-221
影响水下成像质量的核心因素是后向散射光的干扰。偏振差分水下成像技术能够显著抑制后向散射光,是在水下散射环境中获取清晰图像的有效方法。传统的偏振差分方法是基于两个正交偏振方向上的偏振图像进行差分的,该方法虽然对后向散射光有明显的抑制效果,但其调制自由度低,限制了成像质量的进一步提升。针对这一问题,提出一种改进型偏振差分水下成像方法,该方法基于两个最优偏振方向的偏振图像进行差分,并通过引入差分项的权重系数,最终实现具有三个自由度的偏振差分水下成像。实验结果显示,该方法相对于传统的偏振差分成像方法,可更好地抑制后向散射光、凸显物体信号光,最终实现了更高质量的水下清晰成像。  相似文献   

8.
基于激光主动成像的烟雾环境下的目标探测具有重要研究意义,有效抑制光的散射作用是提高烟雾环境下成像质量的关键。根据光的偏振理论,仿真分析了光子单次散射的偏振特性与散射角的变化关系,并利用蒙特卡罗方法模拟了光在烟雾环境中传输的偏振特性,提出了利用偏振差法来抑制光散射作用,最后进行了简单的成像实验。结果表明,光在烟雾中传输时散射光主要由小角度散射光构成,仍然保留了初始激光的部分偏振特性,相比于直接灰度成像,偏振差法能够有效滤除小角度散射光的影响,增强成像目标的细节信息和图像的对比度。  相似文献   

9.
偏振图像比传统强度图像包含更丰富的物体表面反射及散射信息。用萨尔萨(SALSA)相机在自然光照下获取水下偏振图像,研究不同材质物体、放置深度、牛奶浓度及波段因素对水下目标物偏振成像的影响。结果表明:蓝色波段偏振成像能够较好地获取水下物体的边界轮廓等信息; 不同材质的目标物在水下呈现不同的偏振特性, 紫铜偏振度最高达0.69;在1.40 mg/L牛奶浑浊度的水下,偏振图像仍能通过比较目标物的偏振度(degree of polarization,DOP)信息来检测出水下目标物,瓷片的DOP仅降低0.31;此外,在水下约40 cm深度下,偏振成像获取的图像比强度图像轮廓更为清晰,如铁的偏振对比度比强度对比度高5.26%。  相似文献   

10.
分析水中粒子对光的吸收及后向散射造成的图像退化的物理模型,提出一种基于非偏振光照明的水下偏振成像目标增强技术。该技术的优势在于非偏振光照明确保了目标反射光与杂散光始终存在偏振态差异;采用偏振角特征参量确保了杂散光光强估算的精确性。与基于线偏振光照明的水下偏振成像技术相比,其适用范围更广,图像恢复精度更高。实验结果表明,该方法能够提高水下图像的能见度与对比度,对比度至少提升100%,适用于不同材质目标、不同成像距离以及不同杂质、不同浑浊程度的水体环境,在水下成像领域具有潜在应用价值。  相似文献   

11.
浅海被动水下偏振成像探测方法   总被引:2,自引:0,他引:2       下载免费PDF全文
卫毅  刘飞  杨奎  韩平丽  王新华  邵晓鹏 《物理学报》2018,67(18):184202-184202
针对传统被动水下偏振成像方法忽略水体对光的吸收效应,成像结果中存在严重的色彩失真,且并未深入发掘利用背景散射光中包含的场景信息的问题.提出浅海被动水下偏振成像探测方法,该方法从水体中背景散射光的传输特性出发,分析场景深度信息与散射光的物理关系,建立基于深度信息的水下Lambertian反射模型,实现无色彩畸变的水下目标场景清晰成像探测.实验结果表明,该方法能够提供接近水下目标真实色彩、符合人眼视觉特性的清晰探测结果,提高水下成像探测能力.  相似文献   

12.
针对水下光学图像颜色失真、非均匀光照、对比度低的问题,提出基于优势特征图像融合的水下光学图像增强算法.首先,提出改进的暗通道先验算法去除退化图像中的不均匀浑浊并均衡色彩;其次,对颜色校正图像分别使用基于加权分布的自适应伽玛校正算法和限制对比度自适应直方图均衡-同态滤波算法,增强颜色校正图像对比度并使其亮度均衡;最后,定义三幅融合图像即颜色校正图像、亮度均衡图像、对比度增强图像的关联权重图,通过多尺度融合算法获得融合图像.与单一预处理算法只能解决对应的退化现象相比,该算法对单幅退化图像进行多算法处理,得到三幅优势特征图像,通过不同权重的组合最大程度地将各优势特征相结合,得到的综合效果远超各单一算法优化效果,不再局限于解决颜色失真等单一问题.将本文算法与现有算法在主观评价和客观评价两方面进行实验对比,结果表明,该算法可以有效平衡水下图像的色度、饱和度及清晰度,视觉效果接近自然场景下的图像.  相似文献   

13.
为了改善主动光在水下传播过程中由散射与吸收效应导致的深海图像对比度低下以及颜色失真问题,提出一种水下图像增强算法.不同于传统方法利用最亮点的强度值作为背景光,提出基于物体与背景光非相关性的背景光估计方法,有效避免了前景处的亮像素或白色物体像素对背景光的误判,同时确保了去散射的精确性,提高水下图像的对比度;针对人造光源的颜色增益和光路衰减导致的图像色偏等问题,在去散射图像上选取离光源最近的灰色像素,利用其对光源的敏感性,将光照强度分离出来.最终,通过估计并去除光源本身的颜色增益,同时补偿光在传播过程中的损失,实现图像的颜色校正.实验结果表明,所提算法可以有效去除水下图像的散射效应,较好地恢复图像色彩,进而获得较优的增强图像.相比于其他算法,增强后的图像信息熵和水下图像质量评价指标值较高,说明该算法能显著提升水下图像的质量,同时保留图像有用信息.  相似文献   

14.
基于Stokes矢量的实时偏振差分水下成像研究   总被引:5,自引:0,他引:5       下载免费PDF全文
管今哥  朱京平  田恒  侯洵 《物理学报》2015,64(22):224203-224203
偏振差分水下成像能够有效地克服光散射效应造成的图像退化问题, 在水下物体探测与识别领域具有重要应用价值. 传统的偏振差分方法靠光学检偏器的无规则机械转动来实现对散射背景的共模抑制, 限制了其在水下成像过程中的实时探测性能. 本文通过分析偏振差分探测原理来建立偏振差分成像模型, 从理论上提出了基于Stokes矢量的计算偏振差分水下实时成像系统, 并进行了实验验证. 研究结果表明, 基于Stokes矢量的计算偏振差分成像不仅与传统的偏振差分方法具有相同的水下探测效果, 更重要的是可以实现快速成像过程. 该方法可以应用到目前的偏振成像仪器系统, 实现无需人-机互动的自动化实时偏振差分水下成像, 进一步提高水下物体探测与识别的效率.  相似文献   

15.
徐洪梅  张志刚  郑冰 《光子学报》2014,39(9):1606-1610
为了克服水下探测中后向散射光背景噪音的影响,提出了非均匀光场水下探测方法,推导得出非均匀光场的照度分布函数与接收口径、目标与接收器的距离以及海水的体积衰减系数几个因素有关.通过搭建集束光水下图像系统,对其产生的非均匀光场的分布特性和水下探测特性进行了水池实验.观测结果为,在0.6倍能见度下,可分辨1 mm细节,在1倍能见度时,可分辨目标轮廓,在1.5倍能见度时,可探测到目标.结果证明,该系统具有宽视角、全景深、图像清晰度高等特点.  相似文献   

16.
王殿伟  韩鹏飞  范九伦  刘颖  许志杰  王晶 《物理学报》2018,67(21):210701-210701
为解决多谱段降质图像增强问题,提出了一种基于光照-反射成像模型和形态学操作的多谱段图像增强算法.首先对图像饱和度使用自适应非线性拉伸函数进行拉伸,使增强后的图像色彩更加饱和、自然;接下来利用引导滤波算法提取出图像的光照分量,提出了一种基于细节特征的加权融合策略,利用光照分布特性构造了一种自适应Gamma校正函数对光照分量进行处理,并将其与利用对比度受限的自适应直方图均衡化方法处理后的光照分量以及原始光照分量进行融合;然后在反射分量校正时,构造了一种形态学操作函数来校正反射信息;最后合并光照分量和反射分量,并与处理后的饱和度分量和色调分量一起得到增强图像.采用主客观评价指标对可见光低照度图像、水下图像、高动态范围图像、沙尘暴图像、雾天图像和热红外图像6种降质多谱段图像实验结果进行分析比较,结果表明本文算法能够有效地抑制图像噪声、增强图像细节信息、改善图像视觉效果,可应用于多种图像增强领域.  相似文献   

17.
水下物体激光圆偏振成象实验及与线偏振成象的比较   总被引:2,自引:0,他引:2  
曹念文 《光子学报》1998,27(6):568-572
采用波长532nm激光作光源,面阵CCD作探测器,利用圆偏振技术进行水下物体成象实验研究,对实验结果进行了分析并与线偏振成象技术进行了比较。结果表明无论是采用圆偏振技术还是线偏振技术都可提高水下物体成象的衬比(度)和成象距离;水体较清时圆偏振成象清晰度远远大于线偏振成象清晰度;当水体较混时,圆偏振成象清晰度大大下降和线偏振成象效果相接近。  相似文献   

18.
文侨  王凯歌  邵永红  屈军乐*  牛憨笨 《物理学报》2013,62(3):34203-034203
提出了一种基于偏振滤波图像增强和动态散斑照明的新型宽场荧光层析显微镜. 该显微镜采用了一种新型的偏振滤波图像增强技术, 基于激发光与荧光偏振态的差异, 利用偏振器件滤除激发光; 并利用动态散斑照明实现宽场层析. 该荧光层析显微镜具有结构简单、低成本、响应速度快、容易操作等特点. 实验研究结果表明, 本文提出的滤波方案能够显著地提高图像质量, 利用动态散斑照明实现宽场层析具有较高的纵向分辨能力. 研究丰富了在荧光显微镜中, 从强激发光中提取弱荧光信号的技术手段, 为今后发展具有快速响应, 波长可调谐的多光谱荧光层析等高端的显微镜具有重要参考意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号