首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In this paper, we propose a scheme to enhance trapping of entanglement of two qubits in the environment of a photonic band gap material. Our entanglement trapping promotion scheme makes use of combined weak measurements and quantum measurement reversals. The optimal promotion of entanglement trapping can be acquired with a reasonable finite success probability by adjusting measurement strengths.  相似文献   

2.
Mahmoud Abdel-Aty 《Laser Physics》2006,16(10):1381-1394
Motivated by recent developments in quantum entanglement, we study the relations among concurrence and phase entropy of a three-level atom interacting with a bimodal cavity field. Analytical results are presented when the photonic band gap is exhibited by the presence of photonic crystals. The evolution of the atomic inversion with the field initially in a coherent state is examined, and different nonclassical effects in its dynamics are discussed. An extension of the notion of concurrence introduced by Wooters is used to quantify the entanglement. We conclusively calculate the phase entropy and entanglement using the Pegg-Barnett phase formalism. Evidence has been found to support the idea that phase entropy and concurrence are correlated in this particular model. One feature of the regime considered here is that closed-form evaluation of the time evolution may be carried out in the presence of the detuning and the photonic band gap, which provides insight into the difference in the nature of the concurrence function for atom-field coupling, mode frequency, and different cavity parameters. We demonstrate how fluctuations in the concurrence and phase entropy are affected by the presence of the photonic band gap. Explicit results with numerical simulations applied to GaAs are obtained.  相似文献   

3.
This communication is an enquiry into the circumstances under which concurrence and phase entropy methods can give an answer to the question of quantum entanglement in the composite state when the photonic band gap is exhibited by the presence of photonic crystals in a three-level system. An analytic approach is proposed for any three-level system in the presence of photonic band gap. Using this analytic solution, we conclusively calculate the concurrence and phase entropy, focusing particularly on the entanglement phenomena. Specifically, we use concurrence as a measure of entanglement for dipole emitters situated in the thin slab region between two semi-infinite one-dimensionally periodic photonic crystals, a situation reminiscent of planar cavity laser structures. One feature of the regime considered here is that closed-form evaluation of the time evolution may be carried out in the presence of the detuning and the photonic band gap, which provides insight into the difference in the nature of the concurrence function for atom-field coupling, mode frequency and different cavity parameters. We demonstrate how fluctuations in the phase and number entropies affected by the presence of the photonic-band-gap. The outcomes are illustrated with numerical simulations applied to GaAs. Finally, we relate the obtained results to instances of any three-level system for which the entanglement cost can be calculated. Potential experimental observations in solid-state systems are discussed and found to be promising.  相似文献   

4.
S. Roshan Entezar   《Physics letters. A》2009,373(38):3413-3418
The entanglement of a two-level atom and its radiation field near the edge of a photonic band gap is studied by using the quantum entropy. Unlike the free space case, there is a steady-state entanglement between the atom and its spontaneous emission field even when the atomic transition frequency lies outside the band gap. Moreover, the degree of entanglement, which is due to the formation of atom–photon bound dressed state, depends on the detuning of the atomic transition frequency from the photonic band edge and can be controlled by a controllable photonic band gap crystal.  相似文献   

5.
Scalable quantum networks require the capability to create, store and distribute entanglement among distant nodes (atoms, trapped ions, charge and spin qubits built on quantum dots, etc.) by means of photonic channels. We show how the entanglement between qubits and electromagnetic field modes allows generation of entangled states of remotely located qubits. We present analytical calculations of linear entropy and the density matrix for the entangled qubits for the system described by the Jaynes-Cummings model. We also discuss the influence of decoherence. The presented scheme is able to drive an initially separable state of two qubits into an highly entangled state suitable for quantum information processing.  相似文献   

6.
谢双媛  胡翔 《物理学报》2010,59(9):6172-6177
应用Von Neumann熵和Schmid tnumber K两种纠缠度量讨论了各向异性光子晶体中二能级原子和自发辐射场间纠缠度的演化性质.研究发现,原子-光场纠缠度的演化与原子上能级和光子晶体能带带边的相对位置有关,当原子上能级处于光子晶体禁带内,原子-光场纠缠度将保持稳定,当原子上能级处于光子晶体能带中,原子-光场纠缠度先增大后衰减到零.纠缠度的大小还与原子的初态有关.可以通过控制原子的初态和原子上能级与带边的相对位置来控制原子-光场纠缠度的演化特性.  相似文献   

7.
K. Le Hur 《Annals of Physics》2008,323(9):2208-2240
The concept of entanglement entropy appears in multiple contexts, from black hole physics to quantum information theory, where it measures the entanglement of quantum states. We investigate the entanglement entropy in a simple model, the spin-boson model, which describes a qubit (two-level system) interacting with a collection of harmonic oscillators that models the environment responsible for decoherence and dissipation. The entanglement entropy allows to make a precise unification between entanglement of the spin with its environment, decoherence, and quantum phase transitions. We derive exact analytical results which are confirmed by Numerical Renormalization Group arguments both for an ohmic and a subohmic bosonic bath. The entanglement entropy obeys universal scalings. We make comparisons with entanglement properties in the quantum Ising model and in the Dicke model. We also emphasize the possibility of measuring this entropy using charge qubits subject to electromagnetic noise; such measurements would provide an empirical proof of the existence of entanglement entropy.  相似文献   

8.
The entanglement of a two-level atom with its spontaneously emitted photon embedded in double-band anisotropic photonic crystal has been investigated via the method of the quantum entropy. Different from the case in an isotropic crystal or in vacuum, the entanglement has symmetrical properties and much slower entanglement rate near the two band edges. Moreover, as a result of the atom-photon bound states by the virtue of the localization around the emitting atom, the degree of the entanglement gradually increases, achieves the maximum and then sharply reduces to zero on the boundary of forbidden band gap as the atomic frequency moves from the center of the band gap to either of the band edges.  相似文献   

9.
The destruction of entanglement of open quantum systems by decoherence is investigated in the asymptotic long-time limit. For this purpose a general and analytically solvable decoherence model is presented which does not involve any weak-coupling or Markovian assumption. It is shown that two fundamentally different classes of entangled states can be distinguished and that they can be influenced significantly by two important environmental properties, namely, its initially prepared state and its size. Quantum states of the first class are fragile against decoherence so that they can be disentangled asymptotically even if coherences between pointer states are still present. Quantum states of the second type are robust against decoherence. Asymptotically they can be disentangled only if also decoherence is perfect. A simple criterion for identifying these two classes on the basis of two-qubit entanglement is presented.  相似文献   

10.

We investigate the dynamics and protection of quantum entanglement of a qutrit-qutrit system under local amplitude damping channels with finite temperature. We consider two different initial states. We find that the qutrit-qutrit entanglement decays monotonically as the decoherence strength increases, and may go through entanglement sudden death at higher temperature. Special attention is paid to how to protect the quantum entanglement from decoherence by weak measurement and quantum measurement reversal. Our results show that the entanglement increases with the increase of weak measurement strength when the temperature is lower. However, the protections of entanglement by weak measurement and quantum measurement reversal are almost failed and the decays of entanglement goes up with the increase of weak measurement strength for different decoherence strength when the temperature is higher, even entanglement suffers sudden death.

  相似文献   

11.
Jing Wang 《Optics Communications》2011,284(22):5323-5328
The exact entanglement dynamics of two dipole-dipole interacting two-level atoms coupled to a common photonic band-gap (PBG) environment has been investigated. We show that the detuning conditions and the dipole-dipole interaction (DDI) are two essential ingredients and their interplay plays a crucial role in controlling the entanglement of the two-qubit system. For the negative detuning, corresponding to the case where the atomic transition frequency is inside the band gap, the entanglement of the two-qubit system can survive in the long-time limit. For the positive detuning, although the fast disentanglement presents, the DDI effects can be used to fight against the deterioration of the entanglement. The theoretical results could be applied to the implementation of quantum information processing in nanostructured materials.  相似文献   

12.
We propose a scheme for deterministic generation of entanglement embodied by two L\Lambda -type atoms distributed in two coupled cavities. We study such a system in the dispersive atom-field interactions, where the dynamics of the system operates through the virtual population of both the atomic excited states and the photonic states in the cavities (plus the fiber). We verify the validity of the dynamics, and moreover, study the influences of the decoherence due to the spontaneous emission and photon leakage. We also apply the dynamics for realizing quantum state transfer and quantum phase gates.  相似文献   

13.
In this paper, we present a study of the entropy growth and degradation of entanglement due to intrinsic decoherence for some different initial states in the multi-quanta Jaynes-Cummings model. We analytically solve the Milburn equation for such JC model. Using an established entanglement measure based on the negativity of the eigenvalues of the partially transposed density matrix we find a very strong sensitivity of the maximally generated entanglement to the amount of decoherence, the multiplicity and the form of the and the initial state. Comparison with different measures of entanglement are made.  相似文献   

14.
We study entanglement teleportation in the two‐qubit XX Heisenberg model with pure phase decoherence taken into account. For some initial entangled states, pure phase decoherence has no effect on the teleported entanglement, while for others pure phase decoherence has a pronounced effect. In addition, entanglement sudden death happens in the latter case.  相似文献   

15.
Finding the most robust entangled states during the whole process of decoherence is a particularly fundamental problem for quantum physics and quantum information processing. In this paper, the decoherence process of two-qubit system under two individual identical decoherence channels is investigated systematically. We find that although the robustness of two-qubit states with same initial entanglement is usually different, the Bell-like states are always the most robust entangled states during decoherence. That is to say, affected by the same amount of noise, the remain entanglement of an arbitrary two-qubit state is not more than that of a Bell-like state with the same initial entanglement.  相似文献   

16.
We analyze the absolute photonic band gap in two dimensional (2D) square, triangular and honeycomb lattices composed of air holes or rings with different geometrical shapes and orientations in anisotropic tellurium background. Using the numerical plane wave expansion method, we engineer the absolute photonic band gap in modified lattices, achieved by addition of circular, elliptical, rectangular, square and hexagonal air hole or ring into the center of each lattice unit cell. We discuss the maximization of absolute photonic band gap width as a function of main and additional air hole or ring parameters with different shapes and orientation.  相似文献   

17.
Taming decoherence is a critical issue in quantum information science. We here investigate amplitude-damping decoherence suppression of two-qubit entangled states by weak quantum measurements. It is shown that the weak measurements can effectively suppress the decoherence for different initial entangled states. More interestingly, we show that the weak measurements have different effects on the entanglement protection for two entangled states which are equivalent under a local unitary operation. This result implies that the entanglement protection effect could be modulated according to different demands.  相似文献   

18.
We show that quantum decoherence, in the context of observational cosmology, can be connected to the cosmic dark energy. The decoherence signature could be characterized by the existence of quantum entanglement between cosmological eras. As a consequence, the Von Neumann entropy related to the entanglement process, can be compared to the thermodynamical entropy in a homogeneous and isotropic universe. The corresponding cosmological models are compatible with the current observational bounds being able to reproduce viable equations of state without introducing a priori any cosmological constant. In doing so, we investigate two cases, corresponding to two suitable cosmic volumes, Va 3 and VH ?3, and find two models which fairly well approximate the current cosmic speed up. The existence of dark energy can be therefore reinterpreted as a quantum signature of entanglement, showing that the cosmological constant represents a limiting case of a more complicated model derived from the quantum decoherence.  相似文献   

19.
秦猛  李延标  王晓  白忠 《中国物理 C》2012,36(4):307-310
We study the dynamics of entanglement and teleportation in Bell-diagonal states. Using the concepts of concurrence and fidelity, the analytical expressions of the entanglement, the output entanglement and the average fidelity with decoherence are obtained for this model. We discover a class of initial states in which the output entanglement and the average fidelity are destroyed by decoherence. The quality of teleportation depends on the system parameters and time.  相似文献   

20.
We propose a one-step scheme for creating entanglement between two distant nitrogen-vacancy (NV) centers, which are placed in separate single-mode nanocavities in a planar photonic crystal (PC). With a laser-driven, the decoherence from the excited states of the NV centers can be effectively suppressed by virtue of the Raman transition in the dispersive regime. With the assistant of a strong classical field, fast operation can be achieved. The experimental feasibility of the scheme is discussed based on currently available technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号