首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By means of the generalized direct method, a relationship is constructed between the new solutions and the old ones of the (3+1)-dimensional breaking soliton equation. Based on the relationship, a new solution is obtained by using a given solution of the equation. The symmetry is also obtained for the (3+1)-dimensional breaking soliton equation. By using the equivalent vector of the symmetry, we construct a seven-dimensional symmetry algebra and get the optimal system of group-invariant solutions. To every case of the optimal system, the (3+1)-dimensional breaking soliton equation is reduced and some solutions to the reduced equations are obtained. Furthermore, some new explicit solutions are found for the (3+1)-dimensional breaking soliton equation.  相似文献   

2.
In this work, we discuss the relativistic Landau–He–McKellar–Wilkens quantization and relativistic bound states solutions for a Dirac neutral particle under the influence of a Coulomb-like potential induced by the Lorentz symmetry breaking effects. We present new possible scenarios of studying Lorentz symmetry breaking effects by fixing the space-like vector field background in special configurations. It is worth mentioning that the criterion for studying the violation of Lorentz symmetry is preserving the gauge symmetry.  相似文献   

3.
Li Ge  Sheng Li  Thomas F. George  Xin Sun 《Physics letters. A》2013,377(34-36):2069-2073
Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry.  相似文献   

4.
In terms of group theory—the language of symmetries, the concept of spontaneous symmetry breaking is represented in terms of chains of group-subgroup structures that define the dynamical symmetry of the system under consideration. This framework enables exact analytic solutions of the associated eigenvalue problems.  相似文献   

5.
Based on the Standard Model Extension, we investigate relativistic quantum effects on a scalar particle in backgrounds of the Lorentz symmetry violation defined by a tensor field. We show that harmonic-type and linear-type confining potentials can stem from Lorentz symmetry breaking effects, and thus, relativistic bound state solutions can be achieved. We first analyse a possible scenario of the violation of the Lorentz symmetry that gives rise to a harmonic-type potential. In the following, we analyse another possible scenario of the breaking of the Lorentz symmetry that induces both harmonic-type and linear-type confining potentials. In this second case, we also show that not all values of the parameter associated with the intensity of the electric field are permitted in the search for polynomial solutions to the radial equation, where the possible values of this parameter are determined by the quantum numbers of the system and the parameters associated with the violation of the Lorentz symmetry.  相似文献   

6.
From a two-vortex interaction model in atmospheric and oceanic systems, a nonlocal counterpart with shifted parity and delayed time reversal is derived by a simple AB reduction. To obtain some approximate analytic solutions of this nonlocal system, the multi-scale expansion method is applied to get an AB-Burgers system. Various exact solutions of the AB-Burgers equation, including elliptic periodic waves, kink waves and solitary waves, are obtained and shown graphically.To show the applications of these solutions in describing correlated events, a simple approximate solution for the two-vortex interaction model is given to show two correlated dipole blocking events at two different places. Furthermore, symmetry reduction solutions of the nonlocal AB-Burgers equation are also given by using the standard Lie symmetry method.  相似文献   

7.
Starting from the truncated Painlev′e expansion, the residual symmetry of the Alice-Bob modified Kortewegde Vries(AB-mKdV) equation is derived. The residual symmetry is localized and the AB-mKdV equation is transformed into an enlarged system by introducing one new variable. Based on Lie's first theorem, the finite transformation is obtained from the localized residual symmetry. Further, considering the linear superposition of multiple residual symmetries gives rises to N-th B?cklund transformation in the form of the determinant. Moreover, the P_sT_d(the shifted parity and delayed time reversal) symmetric exact solutions(including invariant solution, breaking solution and breaking interaction solution) of AB-mKdV equation are presented and two classes of interaction solutions are depicted by using the particular functions with numerical simulation.  相似文献   

8.
Gregory Um 《Nuclear Physics B》1975,101(2):450-460
We investigate spontaneous symmetry breaking of a zero mass free Lagrangian within a functional formalism. We find that the boundary conditions of field solutions are responsible for the spontaneous symmetry breaking and this can be incorporated naturally in a functional method.  相似文献   

9.
We have examined the presence of a charge symmetry breaking in a screened system. Using a Thomas-Fermi-type potential and a simple mathematical model, we show that screening on the nuclear charge α induces a charge parametrization α→(α,β) in which appears a new dual charge β in the system. Considering this method, the binding energy of electron becomes invariant under parity symmetry for an order parameter ρ=β-α. We find nontrivial solutions for ρ at the minimum of energy which leads to the broken parity symmetry. The equations obtained for this new screening approach is very similar to the Landau theory of phase transition.  相似文献   

10.
The singlet stability of symmetry adapted (SA), restricted Hartree-Fock (RHF) solutions, and the implied symmetry breaking for several planar, π-electron systems, is investigated using the semiempirical Pariser-Parr-Pople Hamiltonian in the whole range of the coupling constant. We focus here on highly symmetric cyclic polyenes C10H10 and C14H14 and their various distorted analogues of lower symmetry, in particular on the perimeter models of naphthalene and anthracene (p-naphthalene and p-anthracene) modeling the so-called [n]-annulenes. Relying on earlier results for general systems with conjugated double-bonds, we explore the character and properties of both the SA and broken-symmetry (BS) RHF solutions for these systems and relate their behavior to those of highly symmetric cyclic polyenes and corresponding polyacenes. In this way we are able to provide a better understanding of the spontaneous symmetry breaking in these systems at the Hartree-Fock level of approximation.  相似文献   

11.
In this work we group four research topics apparently disconnected, namely solitons, Lorentz symmetry breaking, supersymmetry, and entropy. Following a recent work (Gleiser and Stamatopoulos, 2012), we show that it is possible to construct in the context of travelling wave solutions a configurational entropy measure in functional space, from the field configurations. Thus, we investigate the existence and properties of travelling solitons in Lorentz and CPT breaking scenarios for a class of models with two interacting scalar fields. Here, we obtain a complete set of exact solutions for the model studied which display both double and single-kink configurations. In fact, such models are very important in applications that include Bloch branes, Skyrmions, Yang–Mills, Q-balls, oscillons and various superstring-motivated theories. We find that the so-called Configurational Entropy (CE) for travelling solitons shows that the best value of parameter responsible to break the Lorentz symmetry is one where the energy density is distributed equally around the origin. In this way, the information-theoretical measure of travelling solitons in Lorentz symmetry violation scenarios opens a new window to probe situations where the parameters responsible for breaking the symmetries are arbitrary. In this case, the CE selects the best value of the parameter in the model.  相似文献   

12.
We show that, in vectorial intracavity second-harmonic generation, symmetry breaking occurs if the input amplitude exceeds a critical value. The resulting asymmetric stationary solutions are characterized by a second harmonic that is independent of the input amplitude. The solutions can destabilize through Hopf bifurcations, leading to self-oscillations with pronounced antiphase dynamics. We demonstrate that symmetry breaking can be exploited for flip-flop operation.  相似文献   

13.
A complete analysis of dynamical scale symmetry breaking in 2+1-dimensional QED at both zero and finite temperature is presented by looking at solutions to the Schwinger-Dyson equation. In different kinetic energy regimes we use various numerical and analytic techniques (including an expansion in large flavour number). It is confirmed that, contrary to the case of 3+1 dimensions, there is no dynamical scale symmetry breaking at zero temperature, despite the fact that chiral symmetry breaking can occur dynamically. At finite temperature, such breaking of scale symmetry may take place. Received: 17 August 2000 / Revised version: 24 November 2000 / Published online: 23 January 2001  相似文献   

14.
Dynamical symmetry breaking in non-abelian gauge theories is studied by computing an effective potential for composite operators. We obtain consistent solutions of chiral and gauge symmetry breaking which are, in some cases, compatible with a short distance behavior. The effective theory determined is in agreement with the tumbling hypothesis.  相似文献   

15.

Symmetry breaking solutions of several model theories are investigated with the result that constant gauge transformations of the fields describing zero mass Goldstone particles are responsible for the formal possibility of the spontaneous symmetry breaking.

  相似文献   

16.
The exact analytic solutions of the linearized Schwinger-Dyson equation of fermion self-energy are used to obtain the effective four-fermion and gauge coupling criticality curves for dynamical chiral symmetry breaking. The results show that when the zero-momentum gauge coupling a(0) < a0(0), the critical gauge coupling in the pure gauge interaction case, the minimal critical four-fermion coupling βmin is always nonzero and positive and will go up as the a(0) decreases. The use of the exact solutions also allows us to make quite definite estimations of the momentum scales where chiral symmetry breaking would happen if the values of an infrared parameter ξ are given separately.  相似文献   

17.
The behaviour of a relativistic scalar particle in a possible scenario that arises from the violation of the Lorentz symmetry is investigated. The background of the Lorentz symmetry violation is defined by a tensor field that governs the Lorentz symmetry violation out of the Standard Model Extension. Thereby, we show that a Coulomb-type potential can be induced by Lorentz symmetry breaking effects and bound states solutions to the Klein–Gordon equation can be obtained. Further, we discuss the effects of this Coulomb-type potential on the confinement of the relativistic scalar particle to a linear confining potential by showing that bound states solutions to the Klein–Gordon equation can also be achieved, and obtain a quantum effect characterized by the dependence of a parameter of the linear confining potential on the quantum numbers {n,l}{n,l} of the system.  相似文献   

18.
In this Letter, we investigate multiple existence of the multivortex solutions of the self-dual Chern–Simons CP(1) model on a flat torus for each range of the symmetry breaking parameter. We also study asymptotics of solutions as the Chern–Simons coupling constant goes to zero.  相似文献   

19.
K. Konishi 《Nuclear Physics B》1976,116(2):356-364
Symmetry breaking is discussed using the planar bootstrap condition in the form of Rosenzweig and Veneziano. It is suggested that the bootstrap equations with symmetric couplings allow certain non-symmetric (non-degenerate) solutions for the trajectories, in particular, solutions with small SU(3) breaking but with badly broken SU(4) symmetry.  相似文献   

20.
Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号