首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
Na2H的基态结构与势能函数   总被引:4,自引:0,他引:4  
采用二次组态相关(QCISD)方法对NaH分子进行理论计算,得到它的几何结构、光谱性质,并拟合出它的Murrell-Sorbie势能函数.应用密度泛函(B3LYP)方法,在6-311G(3df,3pd)基组水平上对Na2H分子的基态结构进行优化,并用同样的基组对该分子进行了进一步的频率计算.结果发现Na2H分子的基态稳态结构为C2v构型,采用多体项展式理论导出了它的解析势能函数,其等值势能图准确再现了Na2H分子的结构特征和离解能.并报导了该分子对称伸缩振动等值势能图中存在的两个对称鞍点,对应于反应NaH Na→Na2H,活化能大约为14.56 kJ/mol.  相似文献   

2.
使用SAC/SAC-CI方法,利用D95、D95(d)、6-311g以及6-311g(d)等基组,对Li2分子的基态(X^1∑g^ )、第一激发态(A^1∑u^ )及第二激发态(B^1Пu)的平衡结构和谐振频率进行了优化计算。通过对四个基组的计算结果的比较,得出了D95(d)基组为四个基组中的最优基组的结论;使用D95(d)基组,利用SAC的GSUM(Group Sum of Operators)方法对基态(X^1∑g^ )、SAC-CI的GSUM方法对激发态(A^1∑u^ 和B^1Пu)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X^1∑g^ )、第一激发态(A^1∑u^ )和第二激发态(B^1Пu)相对应的光谱常数(Be,ae,ωe和ωeχe),结果与实验数据较为一致。其中,基态、第一激发态与实验数据吻合得非常好。  相似文献   

3.
SiF2基态分子的结构与势能函数   总被引:1,自引:0,他引:1       下载免费PDF全文
运用Gaussian03软件包,采用密度泛函理论中的B3P86 方法,结合6-311++G**(3df,3pd)基组对基态SiF2分子的平衡电子结构和谐振频率进行了优化计算,得到了其稳定结构为C2v构型.SiF2基态电子态为X1A1,平衡核间距RSi-F=0.1061nm,键角αF-Si-F=100.6762°,离解能 De=13.8eV.应用多体项展式理论推导了基态SiF2分子的解析势能函数,其等值势能图准确地再现了SiF2分子的平衡构型特征和能量变化.  相似文献   

4.
运用单双取代耦合簇(CCSD)方法,选择基组6-311+g(2df)对基态B2、Li2和LiB分子的微观结构进行优化计算,采用最小二乘法拟合得到B2、Li2和LiB分子的势能函数,并得到了与实验值符合很好的光谱常数.采用同种方法,选择6-311g基组对LiB2、6-31g基组对Li2B分子的基态结构进行优化计算.运用原子分子反应静力学原理得到离解极限.在此基础上,采用多体项展式法,得到LiB2和Li2B分子基态解析势能函数,该势能函数准确再现了LiB2和Li2B分子基态平衡结构特征.  相似文献   

5.
运用单双取代耦合簇(CCSD)方法,选择基组6-311+g(2df)对基态B2、Li2和LiB分子的微观结构进行优化计算,采用最小二乘法拟合得到B2、Li2和LiB分子的势能函数,并得到了与实验值符合很好的光谱常数.采用同种方法,选择6-311g基组对LiB2、6-31g基组对Li2B分子的基态结构进行优化计算.运用原子分子反应静力学原理得到离解极限.在此基础上,采用多体项展式法,得到LiB2和Li2B分子基态解析势能函数,该势能函数准确再现了LiB2和Li2B分子基态平衡结构特征.  相似文献   

6.
基态TiH2分子的结构与分析势能函数   总被引:4,自引:0,他引:4  
用密度泛函理论的B3lyp方法,Ti原子采用相对论有效实势(LanL2DZ)收缩价基函数,氢原子采用6-311 g**全电子基函数,对TiH2体系的结构进行优化计算.得到TiH2分子最稳态为C2v构型,电子状态为(C2v(X)3A2),平衡核间距,RTi-H=0.1789 nm,键角∠HTiH =123.365°,离解能:De=5.54216 eV.基态简正振动频υ(A1)=485.4150 cm-1,υ(B2)=1507.6533 cm-1,υ(A1)=1580.2361 cm-1.由微观过程的可逆性原理分析了分子的可能离解极限,并用多体项展式理论方法分别导出基态TiH2分子的势能函数,其等值势能面图准确地再现了TiH2分子的结构特征和离解能.由此讨论了TiH2分子反应的势能面静态特征.  相似文献   

7.
使用SAC/SAC-CI方法,利用D95、D95(d)、6-311g以及6-311g(d)等基组,对Li2分子的基态(X1∑+g)、第一激发态(A1∑+u)及第二激发态(B 1Ⅱu)的平衡结构和谐振频率进行了优化计算.通过对四个基组的计算结果的比较,得出了D95(d)基组为四个基组中的最优基组的结论;使用D95(d)基组,利用SAC的GSUM(Group Sum of Operators)方法对基态(X1∑+g)、SAC-CI的GSUM方法对激发态(A1∑+u和B1Ⅱu)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X1∑+g)、第一激发态(A1∑+u)和第二激发态(B1Ⅱu)相对应的光谱常数(Be,αe,ωe和ωexe),结果与实验数据较为一致.其中,基态、第一激发态与实验数据吻合得非常好.  相似文献   

8.
BH2和AlH2分子的结构及其解析势能函数   总被引:4,自引:3,他引:4       下载免费PDF全文
运用二次组态相关(QCISD)方法, 分别选用6-311++G(3df,3pd)和D95(3df,3pd)基组,对BH2和AlH2分子的结构进行了优化计算,得到BH2分子的稳态结构为C2v构型,电子态为2A1、平衡核间距RBH=0.1187nm、键角∠HBH=128.791°、离解能De=3.65eV、基态振动频率ν1(a1)=1020.103cm-1,ν2(a1)=2598.144cm-1,ν3(b2)=2759.304cm-1 .AlH2分子的稳态结构也为C2v构型,电子态为2A1、平衡核间距RAlH=0.1592nm、键角∠HAlH=118.095°、离解能De=2.27eV、基态振动频率ν1(a1)=780.81cm-1,ν2(a1)=1880.81cm-1,ν3(b2)=1910.46cm-1 .采用多体项展式理论推导了基态BH2和AlH2分子的解析势能函数,其等值势能图准确再现了BH2和AlH2分子的结构特征及其势阱深度与位置.分析讨论势能面的静态特征时得到BH+H→BH2反应中存在鞍点,活化能为150.204kJ/mol;AlH+H→AlH2反应中也存在鞍点,活化能为54.8064kJ/mol.  相似文献   

9.
使用Gaussian03程序包, 采用全电子单双取代耦合簇(CCSD(full))方法, 选择基组6-311+g(2df) , 对Li2分子的基态进行优化计算, 采用十一参量Murrell-Sorbie函数, 运用最小二乘法拟合得到Li2分子基态解析势能函数, 给出与实验值符合很好的光谱常数; 使用同样的方法和基组, 对Li3分子的基态结构进行优化计算, 得到Li3分子基态平衡结构. 采用多体项展式法, 利用Li3分子平衡结构C2v的几何参数、力常数和离解能, 以及七个线性系数Ci(i=1, 2, 3, 4, 5, 6, 7)与两个非线性系数的函数关系, 进行非线性优化拟合得到两个非线性系数, 进而得到七个线性系数, 得到Li3分子基态完全解析势能函数. 势能面静态特征表明, 该势能函数再现了Li3分子基态全部平衡结构特征.  相似文献   

10.
Li_2分子X~1∑_g~ ,A~1∑_u~ 和B~1∏_u态的势能函数   总被引:1,自引:0,他引:1  
使用SAC/SAC-CI方法,利用D95、D95(d)、6-311g以及6-311g(d)等基组,对Li2分子的基态(X1∑g )、第一激发态(A1∑u )及第二激发态(B1∏u)的平衡结构和谐振频率进行了优化计算。通过对四个基组的计算结果的比较,得出了D95(d)基组为四个基组中的最优基组的结论;使用D95(d)基组,利用SAC的GSUM(Group Sum of Operators)方法对基态(X1∑g )、SAC-CI的GSUM方法对激发态(A1∑u 和B1∏u)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X1∑g )、第一激发态(A1∑u )和第二激发态(B1∏u)相对应的光谱常数(Be,αe,ωe和ωexe),结果与实验数据较为一致。其中,基态、第一激发态与实验数据吻合得非常好。  相似文献   

11.
应用群论及原子分子反应静力学方法推导MgB2分子的电子状态及其离解极限,采用密度泛函B3LYP和从头计算QCISD方法在6-311++G**基组水平上,对MgB2分子可能的状态进行优化计算,得出MgB2的三重态能量最低,其稳定构型为C2v,平衡核间距Re=2.2977,键角αBMgB=41.5521°,能量为-248.9645a.u.同时还计算了基态的简正振动频率:对称伸缩振动频率νB2)=315.4430 cm-1,反对称伸缩振动频率νA1)=418.1883 cm-1和弯曲振动频率νA1)=968.9672 cm-1.在此基础上,使用多体项展式理论方法,导出了基态MgB2分子的解析势能函数,其等势面准确再现了基态MgB2平衡结构和离解能,并由此讨论了B+MgB和Mg+BB分子反应的势能面静态特征. 关键词: 2')" href="#">MgB2 多体项展式理论 解析势能函数  相似文献   

12.
使用二次组态相互作用方法,在aug-cc-pvtz基组水平上对LiO2(C2VX2A2)基态分子进行了几何优化,得到了它的平衡几何构型和力常数.根据原子分子反应静力学原理得到可能的电子状态和离解极限.应用多体展式理论方法推导出了LiO2(C2VX2A2)基态分子的解析势能函数.  相似文献   

13.
SiOH和HSiO分子的结构与势能函数   总被引:1,自引:0,他引:1       下载免费PDF全文
使用B3P86/6-311++G**方法对SiOH/HSiO(CS,X2A′)基态分子进行几何优化,得到了SiOH/HSiO分子的平衡几何构型和力常数.根据原子分子反应静力学原理得到SiOH分子可能的电子状态和离解极限.应用多体展式理论方法推导出了SiOH基态分子的解析势能函数. 关键词: 分子结构 解析势能函数 多体展式理论  相似文献   

14.
曾晖  赵俊 《中国物理 B》2012,(7):575-580
In this paper, the energy, equilibrium geometry, and harmonic frequency of the ground electronic state of PO2 are computed using the B3LYP, B3P86, CCSD(T), and QCISD(T) methods in conjunction with the 6-311++G(3df, 3pd) and cc-pVTZ basis sets. A comparison between the computational results and the experimental values indicates that the B3P86/6-311++G(3df, 3pd) method can give better energy calculation results for the PO2 molecule. It is shown that the ground state of the PO2 molecule has C2v symmetry and its ground electronic state is X2A1. The equilibrium parameters of the structure are Rp-o = 0.1465 am, ZOPO = 134.96°, and the dissociation energy is Ed = 19.218 eV. The bent vibrational frequency Ul = 386 cm-1, symmetric stretching frequency v2 = 1095 cm-1, and asymmetric stretching frequency ua = 1333 em-1 are obtained. On the basis of atomic and molecular reaction statics, a reasonable dissociation limit for the ground state of the PO2 molecule is determined. Then the analytic potential energy function of the PO2 molecule is derived using many-body expansion theory. The potential curves correctly reproduce the configurations and the dissociation energy for the PO2 molecule.  相似文献   

15.
使用MP4方法,在6-311G(3df,3pd)基组水平上对AlOH(CS,X1A′)基态分子进行了几何优化,得到了它的平衡几何构型和力常数.根据原子分子反应静力学原理得到AlOH分子的电子状态和可能的离解极限.应用多体展式理论方法推导出了AlOH基态分子的解析势能函数. 关键词: AlOH 分子结构 解析势能函数 多体展式理论  相似文献   

16.
In this paper the equilibrium structure of HCO has been optimized by using density functional theory (DFT)/ B3P86 method and CC-PVTZ basis. It has a bent (Cs, X^2A') ground state structure with an angle of 124.4095 °. The vibronic frequencies and force constants have also been calculated. Based on the principles of atomic and molecular reaction statics, the possible electronic states and reasonable dissociation limits for the ground state of HCO molecule have been determined. The analytic potential energy function of HCO (X^2A') molecule has been derived by using the many-body expansion theory. The contour lines are constructed, which show the static properties of HCO (X^2A'), such as the equilibrium structure, the lowest energies, etc. The potential energy surface of HCO (X^2A') is reasonable and very satisfactory.  相似文献   

17.
曾晖  赵俊 《中国物理 B》2012,(7):579-584
In this paper, the energy, equilibrium geometry, and harmonic frequency of the ground electronic state of PO2 are computed using the B3LYP, B3P86, CCSD(T), and QCISD(T) methods in conjunction with the 6-311++G(3df, 3pd) and cc-pVTZ basis sets. A comparison between the computational results and the experimental values indicates that the B3P86/6-311++G(3df, 3pd) method can give better energy calculation results for the PO 2 molecule. It is shown that the ground state of the PO2 molecule has C2v symmetry and its ground electronic state is X2 A1 . The equilibrium parameters of the structure are R P O = 0.1465 nm, ∠OPO = 134.96°, and the dissociation energy is Ed = 19.218 eV. The bent vibrational frequency ν 1 = 386 cm-1 , symmetric stretching frequency ν 2 = 1095 cm-1 , and asymmetric stretching frequency ν 3 = 1333 cm-1 are obtained. On the basis of atomic and molecular reaction statics, a reasonable dissociation limit for the ground state of the PO2 molecule is determined. Then the analytic potential energy function of the PO2 molecule is derived using many-body expansion theory. The potential curves correctly reproduce the configurations and the dissociation energy for the PO2 molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号