首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 95 毫秒
1.
The impact of unilateral hearing loss on the localization of horizontal plane sound sources ipsilateral and contralateral to the side of the unimpaired ear was examined. Normal-hearing listeners judged the direction of six loudspeakers, separated by 30° and arrayed frontally or laterally on the right side with the right or left ear occluded. The benefit of massed practice over three sequential days was assessed. For the frontal loudspeaker array, azimuthal discrimination on the occluded side was poor but only 30% of sounds were perceived to come from the unoccluded side. For the right lateral array, when the ipsilateral ear was unoccluded, front and back were rarely confused. Accuracy mainly decreased for speakers close to the midline axis, front and back. When the contralateral ear was unoccluded responses were biased toward the rearmost speaker. Practice did not improve performance. The findings were discussed within the context of military operations. They support the need for job-specific hearing standards.  相似文献   

2.
A parametric loudspeaker radiates an audible signal by the interaction of the primary wave that is amplitude modulated and is known as a super-directivity loudspeaker. The parametric loudspeaker is one of the prominent applications of nonlinear acoustics. So far, the applications have been limited monaural reproduction sound system for public address in museum, station, street etc. In this paper, we investigated sound localization of stereo reproduction using two parametric loudspeakers in comparison with that using two ordinary dynamic loudspeakers. In subjective tests, the binaural information ILD (Interaural Level Difference) or ITD (Interaural Time Delay) was focused on. To investigate the characteristics of sound localization in a wide listening area, three typical listening positions were picked up. Signals were 500 Hz, 1 kHz, 2 kHz and 4 kHz pure tones and pink noise. The used parametric loudspeaker was an equilateral hexagon. The subjective test led to the results that when the parametric loudspeakers were used, the listeners at the three typical listening positions perceived the correct sound localization of not only pure tone but also pink noise and when the ordinary dynamic loudspeakers were used, except for the case of pure tone with ITD, the tendency was almost similar to those using the parametric loudspeakers. The second subjective tests were conducted in order to investigate in details the difference between parametric loudspeakers and ordinary dynamic loudspeakers by increasing the number of subjects. In the case of ITD and 500 Hz using the ordinary dynamic loudspeakers, three types of sound localization were categorized, in which the reversed type was major and the normal and the other types were minor. The ILDs which were measured with a dummy head and were calculated with several formulas were almost the same and indicated the reasons of the reversed typed sound localization and a serious influence of the crosstalk. It was found that in the case of pure tone with ITD, the contradiction between the binaural information ILD and ITD is remarkable, because the directivity of the ordinary dynamic loudspeakers was so dull that the crosstalk components had a serious influence on sound localization. It was determined the parametric loudspeaker could transmit correct binaural information to the listener, because the directivity of the parametric loudspeakers was so sharp that it suppressed the cross talk components.  相似文献   

3.
Ambisonics is a series of flexible spatial sound reproduction systems based on spatial harmonics decomposition of sound field. Traditional horizontal and spatial Ambisonics reconstruct horizontal and spatial sound field with certain order of spatial harmonics, respectively. Both the Shannon-Nyquist spatial sampling frequency limit for accurately reconstructing sound field and the complexity of system increase with the increasing order of Ambisonics. Based on the fact that the horizontal localization resolution of human hearing is higher than vertical resolution, mixed-order Ambisonics (MOA) reconstructs horizontal sound field with higher order spatial harmonics, while reconstructs vertical sound field with lower order spatial harmonics, and thereby reaches a compromise between the perceptual performance and the complexity of system. For a given order horizontal Ambisoncis or MOA reproduction, the number of horizontal loudspeakers is flexible, providing that it exceeds some low limit. By using Moore’s revised loudness model, the present work analyzes the influence of the number of horizontal loudspeakers on timbre both in horizontal Ambisonics and MOA reproduction. The binaural loudness level spectra (BLLS) of Ambisoncis reproduction are calculated and then compared with those of target sound field. The results indicate that below the Shannon-Nyquist limit of spatial sampling, increasing the number of horizontal loudspeakers influence little on BLLS then timbre. Above the limit, however, the BLLS for Ambisoncis reproduction deviate from those of target sound field. The extent of deviation depends on both the direction of target sound field and the number of loudspeakers. Increasing the number of horizontal loudspeakers may increase the change of BLLS then timbre in some cases, but reduce the change in some other cases. For MOA, the influence of the number of horizontal loudspeakers on BLLS and timbre reduces when virtual source departs from horizontal plane to the high or low elevation. The subjective evaluation experiment also validates the analysis.  相似文献   

4.
考虑头部转动带来的动态因素对听觉垂直定位的贡献,提出了前方空间环绕声的四扬声器虚拟重放方法。4个扬声器分别布置在水平面左前、右前以及高仰角的左前上、右前上方向,并采用听觉传输信号处理的方法将多通路空间环绕声信号转换为4个扬声器的重放信号。以9.1通路空间环绕声虚拟重放为例,采用头相关传输函数对双耳声压及其包含的定位因素进行分析表明,该方法可以产生正确的双耳时间差及其随头部转动的变化,从而产生合适的侧向定位双耳因素和垂直定位的动态因素。而心理声学实验结果表明,该方法可以重放稳定的前方空间的水平和垂直虚拟源。因此,四扬声器布置结合听觉传输处理足以重放前方空间环绕声的垂直定位信息,实现多通路空间环绕声的向下混合与简化。   相似文献   

5.
张驰  谢菠荪 《应用声学》2024,43(1):64-75
典型的多通路空间声扬声器布置一般包含水平面左前、右前,高仰角左前上、右前上四个方向的扬声器。 本文提出一种利用该四个扬声器产生前方水平与垂直方向虚拟源的一阶局域Ambisonics 信号馈给法。该信号馈给法是通过对目标和重放声场进行球谐函数展开并取一阶近似得到。采用简化的头部模型和精确的头相关传输函数模型分析表明,一阶局域Ambisonics 信号馈给法可以产生合适的低频听觉定位因素,包括双耳时间差及其随头部转动的动态变化。虚拟源定位实验结果表明,该方法可以在扬声器布置的范围内,甚至在略超出扬声器布置的范围内产生不同方位角和仰角的虚拟源。因而本文的方法可用在多通路空间声重放中产生与图像配合的虚拟源定位效果。  相似文献   

6.
Eight listeners were required to locate a train of 4.5-kHz high-pass noise bursts emanating from loudspeakers positioned +/- 30, +/- 20, +/- 10, and 0 deg re: interaural axis. The vertical array of loudspeakers was placed at 45, 90, and 135 deg left of midline. The various experimental conditions incorporated binaural and monaural listening with the latter utilizing the ear nearest or ear farthest from the sound source. While performance excelled when listening with only the near ear, the contribution of the far ear was statistically significant when compared to localization performance when both ears were occluded. Based on head related transfer functions for stimuli whose bandwidth was 1.0 kHz, four spectral cues were selected as candidates for influencing location judgments. Two of them associated relative changes in energy across center frequencies (CFs) with vertical source positions. The other two associated an absolute minimum (maximum) energy for specific CFs with a vertical source position. All but one cue when measured for the near ear could account for localization proficiency. On the other hand, when listening with the far ear, maximum energy at a specific CF outperformed the remaining cues in accounting for localization proficiency.  相似文献   

7.
The purpose of this research was to determine if infants, like adults, show differential localization performance in the median sagittal plane (MSP) as a function of the spectrum of the signal. Infants 6-18 months of age were seated in a dark room facing an array of nine loudspeakers, with one loudspeaker positioned at ear level, 0 degrees, and four each positioned above and below ear level at 4 degrees, 8 degrees, 12 degrees, and 16 degrees. A two-alternative, forced-choice procedure was used in which a sequence of noise bursts was presented at 0 degrees and then shifted vertically, above or below 0 degrees, and continued to be presented until the infant made a directional head and/or eye movement; correct responses were visually reinforced. For each of three bandpass noise conditions (less than 4 kHz, 4-8 kHz, 8-12 kHz), minimum audible angle (MAA) for each listener, i.e., the smallest of the four angular shifts in vertical sound location that the listener could reliably detect, was estimated. Results indicated that MAA systematically decreased with increasing age, revealing an increasingly finer partitioning of auditory space. Moreover, performance at each age revealed the importance of high frequencies for localization in the MSP. Infants did not reliably localize the low-pass signal (less than 4 kHz) and showed the best performance to the signal comprising the highest frequencies (8-12 kHz). These findings reveal systematic age-related improvements in sound localization abilities during infancy, and suggest that spectral cues similar to those for adults operate for infants in vertical localization.  相似文献   

8.
Because the input signals to the left and right ears are not identical, it is important to clarify the role of these signals in the perception of the vertical angle of a sound source at any position in the upper hemisphere. To obtain basic findings on upper hemisphere localization, this paper investigates the contribution of each pinna to the perception of vertical angle. Tests measured localization of the vertical angle in five planes parallel to the median plane. In the localization tests, the pinna cavities of one or both ears were occluded. Results showed that pinna cavities of both the near and far ears play a role in determining the perceived vertical angle of a sound source in any plane, including the median plane. As a sound source shifts laterally away from the median plane, the contribution of the near ear increases and, conversely, that of the far ear decreases. For saggital planes at azimuths greater than 60 degrees from midline, the far ear no longer contributes measurably to the determination of vertical angle.  相似文献   

9.
An experimental implementation of a global sound equalization method in a rectangular room using active control is described in this paper. The main purpose of the work has been to provide experimental evidence that sound can be equalized in a continuous three-dimensional region, the listening zone, which occupies a considerable part of the complete volume of the room. The equalization method, based on the simulation of a progressive plane wave, was implemented in a room with inner dimensions of 2.70 m × 2.74 m × 2.40 m. With this method, the sound was reproduced by a matrix of 4 × 5 loudspeakers in one of the walls. After traveling through the room, the sound wave was absorbed on the opposite wall, which had a similar arrangement of loudspeakers, by means of active control. A set of 40 digital FIR filters was used to modify the original input signal before it was fed to the loudspeakers, one filter for each transducer. The optimal arrangement of the loudspeakers and the maximum frequency that can be equalized is analyzed theoretically in this paper. The presented experimental results show that sound equalization was possible from 10 Hz to approximately 425 Hz in the listening zone. A flat frequency response with deviations within ±5 decibels from the desired value was achieved. A higher demanding performance with deviations within ±1.5 decibels from a flat frequency response was attained in the interval between 20 Hz and 280 Hz. At the same time, the impulse response was quite well approximated to a delayed delta function in the listening zone. Examples of the spatial distribution of the sound field are also shown.  相似文献   

10.
针对短时傅里叶变换在扬声器异常声检测中有效信息提取的随机性问题,提出了特征点法在扬声器异常声检测中的应用。此方法基于扬声器经扫频信号激励所得响应信号的短时傅里叶变换时频图,用改进的尺度不变特征转换算法对合格扬声器与异常声扬声器做特征提取,并将多组特征点经分割剔除后叠加组成特征矩阵模板。以合格扬声器样本提取特征曲线阈值构建检测模型判断扬声器是否存在异常声故障,以不同故障类型扬声器的专有特征点进行故障分类。实验结果表明,此方法可有效提取扬声器异常声特征,故障样本检出率可达97.63%,故障分类精度可达95%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号