首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Shuyu L 《Ultrasonics》2005,43(5):365-373
Based on the equivalent circuit theory, the load characteristics of high power piezoelectric ultrasonic sandwich transducers are studied. Two types of loads are studied. One is liquid load as in ultrasonic cleaning, and the other is solid load as in ultrasonic drilling and machining. The effect of load and structure of the transducer on the resonance frequency of the transducer is analyzed. It is shown that the effect of load on the resonance frequency of sandwich transducers with different structures is different. For liquid load as in ultrasonic cleaning, the effect of the load on the resonance frequency of the sandwich transducer with symmetrical structure is the largest. It is the smallest for the transducer with its displacement node in the back metal cylinder. For solid load as in ultrasonic drilling and machining, the effect of the load on the resonance frequency of the sandwich transducer with its displacement node in the front metal cylinder is the largest. It is also the smallest for the transducer with its displacement node in the back metal cylinder. On the other hand, for some applications, such as ultrasonic drilling, when the lateral dimension of the tool is much less than that of the transducer, its effect on the resonance frequency of the transducer is small. The conclusions are useful in designing vibrating systems for different ultrasonic applications.  相似文献   

2.
A new type of high power composite ultrasonic transducer was proposed and studied. The composite transducer consists of a sandwich longitudinal piezoelectric transducer, an isotropic metal hollow cylinder with large radial dimension, and the front and back metal radiation mass. By means of its special structure and Poisson’s effect, the composite transducer can produce vibrations both in its longitudinal and radial directions, and therefore, it can radiate sound waves in three-dimensional space. The electro-mechanical equivalent circuit of the composite transducer was derived and the resonance frequency equation was obtained analytically. Numerical methods were used to simulate the vibration of the composite transducer, and the vibrational displacement distribution, the resonance frequency and the radiation sound field are given. Some composite transducers are designed and manufactured; their resonance frequencies and the radiation acoustic field are measured and compared with the analytical and numerical results. It can be seen that the measured frequencies and acoustic field contour are in good agreement with the analytical and numerical results. It is expected that this kind of composite ultrasonic transducer can be used in more and more power ultrasonic applications, such as ultrasonic cleaning, ultrasonic extraction, ultrasonic sonochemistry and other ultrasonic liquid processing, where high ultrasonic power and large ultrasonic processing space are needed increasingly.  相似文献   

3.
Lin S 《Ultrasonics》2006,44(1):109-114
In this paper, the Langevin longitudinal-flexural composite mode piezoelectric ultrasonic transducer is studied. This type of transducers consists of slender metal rods and longitudinally polarized piezoelectric ceramic rings. The resonance frequency equations for the longitudinal and flexural vibrations in the transducer are derived. By correcting the length of the metal slender rods, the simultaneous resonance of the longitudinal and flexural vibrations in the transducer is acquired. The experimental results show that the measured resonance frequencies of the transducers are in good agreement with the computed ones, and the measured resonance frequencies of the longitudinal and the flexural vibrations in the composite transducers are also in good agreement with each other.  相似文献   

4.
Based on the classical torsional and flexural vibrational theory of a slender rod, the prestressed sandwich torsional-flexural composite mode piezoelectric ceramic ultrasonic transducer is studied. This type of transducer consists of the slender metal rods and the longitudinally and tangentially polarized piezoelectric ceramic rings. The resonance frequency equations for the torsional and flexural vibrations in the transducers are derived. The simultaneous resonance of the torsional and flexural vibrations in the transducer is acquired by correcting the length of the metal slender rods resulting from the piezoelectric ceramic elements. The experimental results show that the measured resonance frequencies of the transducers are in good agreement with the computed ones, and the measured resonance frequencies of the torsional and the flexural vibrations in the composite transducers are also in good agreement with each other.  相似文献   

5.
Xu L  Lin S  Hu W 《Ultrasonics》2011,51(7):815-823
This paper presents a new high power ultrasonic (HPU) radiator, which consists of a transducer, an ultrasonic horn, and a metal circular ring. Both the transducer and horn in longitudinal vibrations are used to drive a metal circular ring in a radial-axial coupled vibration. This coupled vibration cannot only generate ultrasound in both the radial and axial directions, but also focus the ultrasound inside the circular ring. Except for the radial-axial coupled vibration mode, the third longitudinal harmonic vibration mode with relative large vibration amplitude is also detected, which can be used as another operation mode. Overall, the HPU with these two vibration modes should have good potential to be applied in liquid processing, such as sonochemistry, ultrasonic cleaning, and Chinese herbal medicine extraction.  相似文献   

6.
鲜晓军  林书玉 《应用声学》2008,27(3):234-238
研究了一种具有多个共振频率的矩形辐射器夹心式超声换能器,换能器由圆柱形后盖板、压电陶瓷晶堆及矩形六面体辐射器前盖板组合而成。利用表观弹性法和一维近似理论给出了多频换能器横向及纵向理论共振频率方程。对一种特殊情况下的此类换能器进行了有限元及实验分析,给出了各自的频率输入导纳曲线。对理论和实验结果进行分析后表明,此类矩形辐射器夹心式超声换能器可以在不同的振动模态上工作,具有多个共振频率.  相似文献   

7.
The vibrational behaviour of the Langevin transducer is usually analysed using 1D Mason model which is valid when the lateral dimensions of the transducer are smaller than a quarter wavelength at the fundamental longitudinal resonance. In this work a 3D finite element analysis of the Langevin transducer's behaviour operating in the underwater sonar range of frequencies (30-140 kHz) is presented. Several samples with total length greater, comparable to, and smaller than the diameter of the transducer are analysed. For each sample, the resonance frequencies in the observed frequency range are computed and compared with those obtained experimentally from the measurements carried out using several in-house built prototypes. For the most important aspect ratios the resonance displacement distributions are presented and discussed. The results obtained permit to gain insight into the coupling phenomenon between thickness-extensional and radial modes and suggest that in practical applications transducers with diameters comparable to or greater than total length of the active stack can also be used. The trade-off between the efficiency and power handling ability for different designs is also discussed.  相似文献   

8.
Xian X  Lin S 《Ultrasonics》2008,48(3):202-208
A new type of compound multifrequency ultrasonic transducer is analyzed in this paper. The compound multifrequency ultrasonic transducer consists of two sandwiched ultrasonic transducers and a rectangular radiator. In virtue of the coupling between longitudinal vibration of the sandwiched ultrasonic transducers and flexural vibration of the rectangular radiator, the compound multifrequency ultrasonic transducer can produce several resonance frequencies. Some compound multifrequency ultrasonic transducers are designed and simulated by finite element method (ANSYS), and modal shapes and harmonic response are analyzed. The compound multifrequency ultrasonic transducers are designed and manufactured. The resonance frequencies are measured and compared with the numerical results. The effect of the geometrical dimensions of the compound multifrequency ultrasonic transducer and the location of two sandwiched ultrasonic transducers on the compound multifrequency ultrasonic transducer is discussed. It is shown experimentally and numerically that the compound multifrequency ultrasonic transducer has several resonance frequencies.  相似文献   

9.
Fu Z  Xian X  Lin S  Wang C  Hu W  Li G 《Ultrasonics》2012,52(5):578-586
In this paper, the resonance frequency equation and expression of displacement amplitude magnifications of a full-wave barber ultrasonic horn are obtained. By discussing the relationships between the displacement amplitude magnifications and the geometrical dimensions, the optimized design of the horn for the largest magnification is proposed, which is helpful to improve the radiation power and the transfer efficiency of the acoustic energy of the ultrasonic oscillatory system. Based on the optimized design of the horn, we introduced a barbell ultrasonic transducer operated in the longitudinal full-wave vibrational model and obtained the resonance frequency equations. For comparison, the resonance frequencies of the full-wave barbell horn and the full-wave barbell transducer are also analyzed by finite element method (FEM). It is shown that the values obtained by theoretical analysis and FEM are in good agreement with experimental observations. We hope that the research of this paper is helpful for the use of the barbell horn and transducer in the applications such as ultrasonic liquid processing.  相似文献   

10.
The so-called KLM-model for ultrasonic transducers is employed to optimize transducer design. Some new performance characteristics are defined which change monotonically with design parameters. These characteristics are based on the area of the envelope of the echo waveform produced by the transducer and of the corresponding amplitude spectrum. The efficiency of the transducer is defined by the round trip energy factor. The performance characteristics are used in a composite performance measure, which is then employed as a criterion in the optimization procedure. Two transducers are investigated: for medical imaging purposes and for spectral analysis of clinical echograms. The influence of electrical matching, backing impedance, matching layer impedance, bond line thickness and series induction on the optimized transducers is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号