首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
理论研究了电子激发和溶剂效应导致的芴酮-甲醇复合体系中分子间氢键增强现象.通过基态和激发态性质的计算,不仅展示了分子间氢键键长的变化以及变化在振动光谱中的影响,而且揭示了导致氢键变化的内在物理机制:溶质分子的电子激发及溶剂化效应引起的电子重新分布,增大了溶质和溶剂分子的偶极矩,导致了它们之间的相互作用的增大,并最终加强了分子间氢键的强度.还分别对处于液相及气相中的复合体的基态和激发态的几何结构、红外谱、复合体及构成分子的偶极矩进行了理论计算,结果阐明了电子激发与溶剂化效应对氢键变化的贡献,同时还发现只有进一步引入溶剂化效应,复合体的基态、激发态的性质才能与实验达到精确一致.所有激发态均采用所开发的基于含时密度泛函理论解析计算一阶、二阶激发态能量导数的方法.  相似文献   

2.
采用密度泛函(DFT)和含时密度泛函理论(TDDFT)方法对一种新合成的发色团(3)在非质子性溶剂DMSO中的激发态分子内质子转移机制进行了理论研究.基于3发色团的基态和激发态优化结构, 计算得到了该发色团中与氢键相关的键长和键角的大小, 以及与氢键相连接的 O-H键红外振动光谱, 发现分子内氢键在激发态下有增强的趋势. 理论计算得到的吸收谱和荧光谱的峰值与实验测得的结果吻合得很好, 证明了所采用的理论方法的正确性与合理性. 最终, 通过对该发色团的分子内电荷转移与电荷分布的分析, 证实了激发态分子内质子转移发生的可能性, 并说明了其转移过程的发生机制.  相似文献   

3.
采用密度泛函(DFT)和含时密度泛函理论(TDDFT)方法对一种新合成的发色团(3)在非质子性溶剂DMSO中的激发态分子内质子转移机制进行了理论研究.基于3发色团的基态和激发态优化结构,计算得到了该发色团中与氢键相关的键长和键角的大小,以及与氢键相连接的O-H键红外振动光谱,发现分子内氢键在激发态下有增强的趋势.理论计算得到的吸收谱和荧光谱的峰值与实验测得的结果吻合得很好,证明了所采用的理论方法的正确性与合理性.最终,通过对该发色团的分子内电荷转移与电荷分布的分析,证实了激发态分子内质子转移发生的可能性,并说明了其转移过程的发生机制.  相似文献   

4.
运用密度泛函(DFT)和含时密度泛函(TD DFT)理论方法研究了在2-(2-羟基苯基)苯并噻唑(HBT)苯环羟基的邻位或对位分别引入羟基和醛基后的衍生物分子内质子转移过程,考察了取代基的电子效应及取代位置对分子内氢键和质子转移反应的影响,模拟计算了各分子的IR振动光谱和电子光谱.研究发现,HBT及其衍生物分子可以形成分子内氢键,且激发态时氢键增强.基态时以醇式构型稳定存在,激发态时酮式结构为优势构象.分子的最大吸收峰和发射峰主要源于电子从前线分子轨道HOMO到LUMO之间的跃迁.基态分子内质子转移需要越过较高的能垒因而难以发生,而激发态时只需越过较低能垒就很容易发生激发态分子内质子转移.取代基的电子效应和取代位置对HBT分子氢键强度、互变异构体的相对稳定性、电子光谱及质子转移反应的能垒均有一定影响.  相似文献   

5.
经式8-羟基喹啉铝(mer-Alq3)是一种光电性能优良的小分子有机半导体发光材料.本文采用密度泛函理论(DFT)B3LYP/6-31G*方法和基组对其进行结构优化,计算并研究了该分子的红外光谱、拉曼光谱和前线轨道.计算得到的红外光谱、拉曼光谱均与实验相符.前线轨道表明基态最高占据轨道(HOMO)的电子云主要集中在苯酚环,最低未占据轨道(LUMO)的电子云主要集中在吡啶环.用含时密度泛函理论(TDDFT)计算得到紫外-可见吸收光谱,采用空穴-电子分析法研究了电子激发特征.结果表明:电子从基态到激发态的跃迁,主要是8-羟基喹啉环内或环间的电荷转移,以π-π*跃迁为主,包括局域激发和电荷转移激发两种类型.本工作对mer-Alq3分子发光机理提出更深入的认识,能为进一步提高该分子发光效率和调控分子的发光范围提供一定的理论指导.  相似文献   

6.
运用密度泛函(DFT)和含时密度泛函(TD DFT)理论方法研究了在2-(2-羟基苯基)苯并噻唑(HBT)苯环羟基的邻位或对位分别引入羟基和醛基后的衍生物分子内质子转移过程,考察了取代基的电子效应及取代位置对分子内氢键和质子转移反应的影响,模拟计算了各分子的IR振动光谱和电子光谱.研究发现,HBT及其衍生物分子可以形成分子内氢键,且激发态时氢键增强.基态时以醇式构型稳定存在,激发态时酮式结构为优势构象.分子的最大吸收峰和发射峰主要源于电子从前线分子轨道HOMO到LUMO之间的跃迁.基态分子内质子转移需要越过较高的能垒因而难以发生,而激发态时只需越过较低能垒就很容易发生激发态分子内质子转移.取代基的电子效应和取代位置对HBT分子氢键强度、互变异构体的相对稳定性、电子光谱及质子转移反应的能垒均有一定影响.  相似文献   

7.
肾上腺素是一种神经和激素的传送体,研究肾上腺素分子的光谱和能级有助于了解其化学稳定性和药理作用。基于密度泛函理论(DFT),利用Gaussian 09软件在B3LYP/6-311G(d,p)基组水平上对肾上腺素分子进行结构优化,采用含时密度泛函理论(TD-DFT)的PBE方法在def2tzvp基组水平上计算肾上腺素分子在气相中的前20个激发态,利用Multiwfn3.7(dev)软件绘制出其紫外光谱图并对激发性质进行分析。肾上腺素分子紫外光谱对应的主要跃迁是从基态分别到第1,2,4,8,15和16激发态的跃迁,其他的激发态的振子强度低于阈值0.03。理论计算得出肾上腺素的紫外光谱有两个吸收峰,分别位于206.23和273.92 nm,206.23 nm峰主要由基态跃迁到第16激发态形成,273.92 nm峰主要是基态跃迁到第2、4激发态形成,主要是由苯环上π→π*跃迁所产生,并与实验光谱吻合较好。对肾上腺素分子的激发态性质分析可知,上述吸收峰都是在最高占据轨道和最低空轨道的临近轨道跃迁产生的。利用密度泛函的PBE方法在6-311G(d, p)的基组水平上计算肾上腺素分子频率并绘制红外光谱,由振动分析可知,3 738和3 662 cm-1峰是由酚羟基O-H伸缩振动产生的特征吸收峰,3 715 cm-1峰是由醇羟基O-H伸缩振动产生的特征吸收峰,2 854 cm-1峰是由甲基的C18-H20键的伸缩振动产生的特征吸收峰,1 516和1 439 cm-1峰是苯环骨架的伸缩振动的特征吸收峰,1 279与1 057 cm-1峰分别是由C6-O10和C12-O23键伸缩振动产生的特征吸收峰,620 cm-1峰是N22-H17键摇摆振动的特征吸收峰。对比肾上腺素的实验红外光谱,发现理论光谱与实验光谱中各基团的特征吸收峰都较为明显且总体吻合较好。由于肾上腺素分子二聚体和多聚体之间形成氢键,分子间氢键的形成削弱了O-H键的强度,降低了能形成分子间氢键的羟基O-H的伸缩振动频率,从而导致实验光谱在3 500~2 500 cm-1之间呈现出一个宽峰。  相似文献   

8.
运用密度泛函(DFT)和含时密度泛函(TDDFT)计算方法研究了10-羟基苯并喹啉(HBQ)及其衍生物分子内质子转移过程,探究了取代基效应对质子转移过程的影响,研究发现,HBQ及其衍生物可以形成分子内氢键,且激发态时氢键增强.基态时各分子以醇式构型稳定存在,激发态时酮式构型为优势构象.各化合物的最大吸收峰和发射峰主要是电子从HOMO到LUMO之间的跃迁引起的.基态分子内质子转移(醇式→酮式)需要跃过较高的能垒因而难以发生,而激发态时只需跃过较低能垒就很容易发生分子内质子转移,吸电子基的引入可以使该过程的能垒降低,因此吸电子基有利于激发态质子转移.取代基效应影响化合物的光谱性质.  相似文献   

9.
特丁基对苯二酚是重要的食品抗氧化剂.理论上,基于密度泛函理论,采用B3LYP泛函及6-311G(d,p)基组在气相环境下优化分子的结构并进行频率计算.在此基础上,基于含时密度泛函理论,选用SMD(solvation model based on density)溶剂模型,利用B3LYP泛函并结合def2-TZVP基组计算分子在无水乙醇溶剂中的前50个激发态.再通过Multiwfn软件对红外光谱做振动分析并考察分子间相互作用对红外光谱的影响,对紫外光谱做分子轨道和电子空穴分析.实验上,通过KBr压片法,利用傅里叶红外变换光谱仪测定样品红外光谱.采用液相法,以乙醇为溶剂,利用紫外可见分光光度计测定样品紫外光谱.通过对比分析可知,理论光谱与实验光谱总体吻合较好.红外光谱各基团的特征吸收峰都较为明显且较好吻合,特丁基对苯二酚二聚体存在氢键作用,这使得O—H键的强度被削弱,导致吸收频率降低并在3670—3070 cm-1处出现一个宽峰.紫外光谱主要由基态跃迁至第1,2,6,7激发态形成,最大吸收峰位于200 nm以下,为π→π*和s→π*跃迁形成,268.8 nm和221.4 nm处的吸收峰均为n→π*和π→π*跃迁形成.由电子空穴图可知,这4个主要激发均为电子局域激发.  相似文献   

10.
塞来昔布(Celecoxib, CXB)是COX-2的高选择性抑制剂,经过20年的发展已经成为世界范围内使用最为广泛的一类处方药.本文基于密度泛函理论,使用B3LYP泛函,6-311++G(d, p)基组进行结构优化.在此工作上对该药物分子的结构、红外光谱、拉曼光谱、分子前线轨道、静电势和激发态性质做了一系列的研究.结果表明:CXB分子是一个稳定的非平面扭曲结构,此结构使得该药物分子在COX-2上的疏水通道中可以迅速通过,从而形成了一个可与苯磺酰胺片段结合的结合腔.对化合物进行频率计算,分别得到红外光谱和拉曼光谱,与实验采集的数据进行对比,呈现出较好的一致性.对分子的基态进行前线轨道和静电势的分析,磺酰胺基与COX-2易形成氢键作用.在CXB分子的激发态研究中发现,CXB分子的激发态性质主要由第1激发态、第3激发态和第6激发态共同决定.这为理解CXB的作用机理提供了重要的信息,也为后期扩展CXB衍生物提供了理论基础.  相似文献   

11.
The solute-solvent interactions of hydrogen-bonded phenol-(H2O)n (n=3-5) clusters in electronic excited states were investigated by means of the time-dependent density functional theory (TDDFT) method. The geometric structures and IR spectra in ground state, S1 state, and T1 state of the clusters, were calculated using the density functional theory (DFT) and TDDFT methods. Only the ring form isomer, the most stable one of the cluster, was considered in this study. Four, five and six intermolecular hydrogen bonds were formed in phenol-(H2O)3, phenol-(H2O)4, and phenol-(H2O)5 clusters, respectively. Based on the analysis of IR spectra, it is revealed that the “window region” between unshifted and shifted absorption bands in both S1 and T1 state becomes broader compared with that in ground state for the corresponding clusters. Furthermore, two interesting phenomenon were observed: (1) with the anticlockwise order of the ring formed by the intermolecular hydrogen bonds in the H-bonded phenol-(H2O)n (n=3-5) clusters, the strengths of the intermolecular hydrogen bonds decrease in all the S0, S1 and T1 states; (2) upon electronic excitation, the smaller the distance between phenol and water is, the larger the change of intermolecular hydrogen bonds strength is. Moreover, the intermolecular hydrogen bond (phenolic OH is the H donor) is strengthened in excited state compared with that in ground state. But the intermolecular hydrogen bond (phenolic OH is the H acceptor) is weakened in excited state.  相似文献   

12.
The time-dependent density functional theory (TDDFT) method was performed to investigate the hydrogenbonding dynamics of methyl cyanide (MeNC) as hydrogen bond acceptor in hydrogen donating methanol (MeOH) solvent. The ground-state geometry optimizations and electronic transition energies and corresponding oscillation strengths of the low-lying electronically excited states for the isolated MeNC and MeOH monomers, the hydrogen-bonded MeNC-MeOH dimer and MeNC-2MeOH trimer are calculated by the DFT and TDDFT methods, respectively. An intermolecular hydrogen bond N≡C…H-O is formed between MeNC and methanol molecule. According to Zhao’s rule on the excited-state hydrogen bonding dynamics, we find the intermolecular hydrogen bonds N≡C…H-O are strengthened in electronically excited states of the hydrogen-bonded MeNC-MeOH dimer and MeNC-2MeOH trimer, with the excitation energy of a related excited state being lowered and electronic spectral redshifts being induced. Furthermore, the hydrogen bond strengthening in the electronically excited state plays an important role on the photophysics and photochemistry of MeNC in solutions  相似文献   

13.
Excited‐state intermolecular or intramolecular proton transfer (ESIPT) reaction has important potential applications in biological probes. In this paper, the effect of benzo‐annelation on intermolecular hydrogen bond and proton transfer reaction of the 2‐methyl‐3‐hydroxy‐4(1H)‐quinolone (MQ) dye in methanol solvent is investigated by the density functional theory and time‐dependent density functional theory approaches. Both the primary structure parameters and infrared vibrational spectra analysis of MQ and its benzo‐analogue 2‐methyl‐3‐hydroxy‐4(1H)‐benzo‐quinolone (MBQ) show that the intermolecular hydrogen bond O1―H2?O3 significantly strengthens in the excited state, whereas another intermolecular hydrogen bond O3―H4?O5 weakens slightly. Simulated electron absorption and fluorescence spectra are agreement with the experimental data. The noncovalent interaction analysis displays that the intermolecular hydrogen bonds of MQ are obviously stronger than that of MBQ. Additionally, the energy profile analysis via the proton transfer reaction pathway illustrates that the ESIPT reaction of MBQ is relatively harder than that of MQ. Therefore, the effect of benzo‐annelation of the MQ dye weakens the intermolecular hydrogen bond and relatively inhibits the proton transfer reaction.  相似文献   

14.
The time‐dependent density functional theory (TDDFT) method was performed to investigate the excited‐state hydrogen bonding dynamics of 4‐amino‐1,8‐naphthalimide (4ANI) as hydrogen bond acceptor in hydrogen donating methanol (MeOH) solvent. The ground‐state geometry optimizations, electronic transition energies and corresponding oscillation strengths of the low‐lying electronically excited states for the isolated 4ANi and hydrogen‐bonded 4ANi‐(MeOH)1,4 complexes were calculated by the DFT and TDDFT methods, respectively. We demonstrated that the intermolecular hydrogen bond C═O···H–O and N–H···O–H in the hydrogen‐bonded 4ANi‐(MeOH)1,4 is strengthened in the electronically excited state, because the electronic excitation energies of the hydrogen‐bonded complex are correspondingly decreased compared with that of the isolated 4ANi. The calculated results are consistent with the mechanism of the hydrogen bond strengthening in the electronically excited state, while contrast with mechanism of hydrogen bond cleavage. Furthermore, we believe that the transient hydrogen bond strengthening behavior in electronically excited state of fluorescent dye in hydrogen‐donating solvents exists in many other systems in solution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Hong-Bin Zhan 《中国物理 B》2022,31(3):38201-038201
The fluorescence mechanism of HBT-HBZ is investigated in this work. A fluorescent probe is used to detect HClO content in living cells and tap water, and its structure after oxidation by HClO (HBT-ClO) is discussed based on the density functional theory (DFT) and time-dependent density functional theory (TDDFT). At the same time, the influence of the probe conformation and the proton transfer site within the excited state molecule on the fluorescence mechanism are revealed. Combined with infrared vibrational spectra and atoms-in-molecules theory, the strength of intramolecular hydrogen bonds in HBT-HBZ and HBT-ClO and their isomers are demonstrated qualitatively. The relationship between the strength of intramolecular hydrogen bonds and dipole moments is discussed. The potential energy curves demonstrate the feasibility of intramolecular proton transfer. The weak fluorescence phenomenon of HBT-HBZ in solution is quantitatively explained by analyzing the frontier molecular orbital and hole electron caused by charge separation. Moreover, when strong cyan fluorescence occurs in solution, the corresponding molecular structure should be HBT-ClO(T). The influence of the intramolecular hydrogen bond formation site on the molecule as a whole is also investigated by electrostatic potential analysis.  相似文献   

16.
In this work, we present the optimized ground state geometrical structures, electronic excitation energies and corresponding oscillation strengths of the low‐lying electronically excited states for the isolated Tce‐CH3COCOOH and Tce‐CH3C(OH)2COOH as well as their corresponding hydrogen‐bonded dimers Tce‐CH3COCOOH‐H2O and Tce‐CH3C(OH)2COOH‐H2O through time‐dependent density functional theory method. It is found that the intermolecular hydrogen bonds C=O···H‐O are strengthened in the electronically excited states of the hydrogen‐bonded dimers Tce‐CH3COCOOH‐H2O and Tce‐CH3C(OH)2COOH‐H2O, in that the excitation energies of the related excited states for the hydrogen‐bonded dimers are decreased compared with those of the corresponding monomers. The calculated results are consistent with the rules that are first demonstrated by Zhao on the excited‐state hydrogen bonding dynamics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The time‐dependent density functional theory method was performed to investigate the excited‐state hydrogen‐bonding dynamics of N‐(2‐hydroxyethyl)‐1,8‐naphthalimide (2a) and N‐(3‐hydroxyethyl)‐1,8‐naphthalimide (3a) in methanol (meoh) solution. The ground and excited‐state geometry optimizations, electronic excitation energies, and corresponding oscillation strengths of the low‐lying electronically excited states for the complexes 2a + 2meoh and 3a + 2meoh as well as their monomers 2a and 3a were calculated by density functional theory and time‐dependent density functional theory methods, respectively. We demonstrated that the three intermolecular hydrogen bonds of 2a + 2meoh and 3a + 2meoh are strengthened after excitation to the S1 state, and thus induce electronic spectral redshift. Moreover, the electronic excitation energies of the hydrogen‐bonded complexes in S1 state are correspondingly decreased compared with those of their corresponding monomer 2a and 3a. In addition, the intramolecular charge transfer of the S1 state for complexes 2a + 2meoh and 3a + 2meoh were theoretically investigated by analysis of molecular orbital. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The time‐dependent density functional theory (TDDFT) method has been performed to investigate the excited state and hydrogen bonding dynamics of a series of photoinduced hydrogen‐bonded complexes formed by (E)‐S‐(2‐aminopropyl) 3‐(4‐hydroxyphenyl)prop‐2‐enethioate with water molecules in vacuum. The ground state geometric optimizations and electronic transition energies as well as corresponding oscillator strengths of the low‐lying electronic excited states of the (E)‐S‐(2‐aminopropyl) 3‐(4‐hydroxyphenyl)prop‐2‐enethioate monomer and its hydrogen‐bonded complexes O1‐H2O, O2‐H2O, and O1O2‐(H2O)2 were calculated by the density functional theory and TDDFT methods, respectively. It is found that in the excited states S1 and S2, the intermolecular hydrogen bond formed with carbonyl oxygen is strengthened and induces an excitation energy redshift, whereas the hydrogen bond formed with phenolate oxygen is weakened and results in an excitation energy blueshift. This can be confirmed based on the excited state geometric optimizations by the TDDFT method. Furthermore, the frontier molecular orbital analysis reveals that the states with the maximum oscillator strength are mainly contributed by the orbital transition from the highest occupied molecular orbital to the lowest unoccupied molecular orbital. These states are of locally excited character, and they correspond to single‐bond isomerization while the double bond remains unchanged in vacuum.  相似文献   

19.
In this work, using density functional theory and time‐dependent density functional theory methods, we theoretically studied the excited‐state behaviors of 3 novel 2‐(2‐hydroxyphenyl)benzothiazole (HBT) derivatives (HBT‐H‐H, HBT‐CN‐H, and HBT‐CN‐CN). Analyses about primary chemical structures such as bond lengths and bond angles, we found that all the intramolecular hydrogen bonds in these 3 structures should be strengthened in the S1 state upon the photoexcitation. Exploring the infrared vibrational spectra at the hydrogen bonds groups, we confirmed that nonsubstitutional HBT‐H‐H structure might play more important roles in the excited‐state intramolecular proton transfer (ESIPT) reaction than HBT‐CN‐H and HBT‐CN‐CN. Further, investigating vertical excitation process, it can be revealed that charge redistribution involved in hydrogen bonding moieties could facilitate the ESIPT reaction. Based on constructing potential energy curves of both S0 and S1 states, we confirmed that the substituents on HBT systems can reasonably regulate and control the ESIPT processes because of the different potential energy barriers. We deem that this present work not only elaborates the different excited‐state behaviors of HBT‐H‐H, HBT‐CN‐H, and HBT‐CN‐CN but also may play important roles in designing and developing new materials and applications involved in HBT systems in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号