首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The FPU problem, i.e., the problem of energy equipartition among normal modes in a weakly nonlinear lattice, is here studied in dimension two, more precisely in a model with triangular cell and nearest-neighbors Lennard-Jones interaction. The number n of degrees of freedom ranges from 182 to 6338. Energy is initially equidistributed among a small number n(0) of low frequency modes, with n(0) proportional to n. We study numerically the time evolution of the so-called spectral entropy and the related "effective number" n(eff) of degrees of freedom involved in the dynamics; in this (rather typical) way we can estimate, for each n and each specific energy (energy per degree of freedom) epsilon, the time scale T(n)(epsilon) for energy equipartition. Numerical results indicate that in the thermodynamic limit the equipartition times are short: more precisely, for large n at fixed epsilon we find a limit curve T(infinity)(epsilon), and T(infinity) grows only as epsilon(-1) for small epsilon. Larger equipartition times are obtained by lowering epsilon, at fixed n, below a crossover value epsilon(c)(n). However, epsilon(c) appears to vanish by increasing n (faster than 1n), and the total energy E=nepsilon, rather than epsilon, appears to be the relevant variable when n is large and epsilon相似文献   

2.
张振俊  唐春梅  康静  童培庆 《中国物理 B》2017,26(10):100505-100505
We study the dynamical energy equipartition properties in the integrable Toda model with additional uniform or disordered on-site energies by extensive numerical simulations. The total energy is initially equidistributed among some of the lowest frequency linear modes. For the Toda model with uniform on-site potentials, the energy spectrum keeps its profile nearly unchanged in a relatively short time scale. On a much longer time scale, the energies of tail modes increase slowly with time. Energy equipartition is far away from being attached in our studied time scale. For the Toda model with disordered on-site potentials, the energy transfers continuously to the high frequency modes and eventually towards energy equipartition. We further perform a systematic study of the equipartition time teq depending on the energy density εand the nonlinear parameter α in the thermodynamic limit for the Toda model with disordered on-site potentials. We find teq∝(1/ε)~a(1/α)~b, where b ≈ 2 a. The values of a and b are increased when increasing the strengths of disordered on-site potentials or decreasing the number of initially excited modes.  相似文献   

3.
Upon initial excitation of a few normal modes the energy distribution among all modes of a nonlinear atomic chain (the Fermi-Pasta-Ulam model) exhibits exponential localization on large time scales. At the same time, resonant anomalies (peaks) are observed in its weakly excited tail for long times preceding equipartition. We observe a similar resonant tail structure also for exact time-periodic Lyapunov orbits, coined q-breathers due to their exponential localization in modal space. We give a simple explanation for this structure in terms of superharmonic resonances. The resonance analysis agrees very well with numerical results and has predictive power. We extend a previously developed perturbation method, based essentially on a Poincare-Lindstedt scheme, in order to account for these resonances, and in order to treat more general model cases, including truncated Toda potentials. Our results give a qualitative and semiquantitative account for the superharmonic resonances of q-breathers and natural packets.  相似文献   

4.
The transient mode localization phenomenon is considered in a mechanical model combining a simply supported beam and transverse nonlinear springs with hardening characteristics. Two different approaches to the model reduction, such as normal and local mode representations for the beam's center line, are discussed. It is concluded that the local mode discretization brings advantages for the transient localization analysis. Based on the specific coordinate transformations and the idea of averaging, explicit equations describing the energy exchange between the local modes and the corresponding localization conditions are obtained. It was shown that when the energy is slowly pumped into the system then, at some point, the energy equipartition around the system suddenly breaks and one of the local modes becomes the dominant energy receiver. The phenomenon is interpreted in terms of the related phase-plane diagram which shows qualitative changes near the image of the out-of-phase mode as the total energy of the system has reached its critical level. A simple closed form expression is obtained for the corresponding critical time estimate.  相似文献   

5.
We numerically study a one-dimensional,nonlinear lattice model which in the linear limit is relevant to the study of bending(flexural)waves.In contrast with the classic one-dimensional mass-spring system,the linear dispersion relation of the considered model has different characteristics in the low frequency limit.By introducing disorder in the masses of the lattice particles,we investigate how different nonlinearities in the potential(cubic,quadratic,and their combination)lead to energy delocalization,equipartition,and chaotic dynamics.We excite the lattice using single site initial momentum excitations corresponding to a strongly localized linear mode and increase the initial energy of excitation.Beyond a certain energy threshold,when the cubic nonlinearity is present,the system is found to reach energy equipartition and total delocalization.On the other hand,when only the quartic nonlinearity is activated,the system remains localized and away from equipartition at least for the energies and evolution times considered here.However,for large enough energies for all types of nonlinearities we observe chaos.This chaotic behavior is combined with energy delocalization when cubic nonlinearities are present,while the appearance of only quadratic nonlinearity leads to energy localization.Our results reveal a rich dynamical behavior and show differences with the relevant Fermi–Pasta–Ulam–Tsingou model.Our findings pave the way for the study of models relevant to bending(flexural)waves in the presence of nonlinearity and disorder,anticipating different energy transport behaviors.  相似文献   

6.
We make a numerical study of the solutions of the equations of motion for the electromagnetic field in a one-dimensional model of a radiant cavity. Our main results are as follows: (1) There exist Stochasticity thresholds such that below them one has ordered motions without energy exchanges, while chaotic motions with intense energy exchanges occur above them; (2) above thresholds there is a trend toward equipartition of energy (in time average) among the normal modes of the field, but this occurs in the sense of Boltzmann and Jeans, namely, with the higher frequencies requiring longer and longer times in order to be involved in the energy sharing.  相似文献   

7.
Time-dependent Hamilton systems are important in modeling the nondissipative interaction of the system with its environment. We review some recent results and present some new ones. In time-dependent, parametrically driven, one-dimensional linear oscillator, the complete analysis can be performed (in the sense explained below), also using the linear WKB method. In parametrically driven nonlinear oscillators extensive numerical studies have been performed, and the nonlinear WKB-like method can be applied for homogeneous power law potentials (which e.g. includes the quartic oscillator). The energy in time-dependent Hamilton systems is not conserved, and we are interested in its evolution in time, in particular the evolution of the microcanonical ensemble of initial conditions. In the ideal adiabatic limit (infinitely slow parametric driving) the energy changes according to the conservation of the adiabatic invariant, but has a Dirac delta distribution. However, in the general case the initial Dirac delta distribution of the energy spreads and we follow its evolution, especially in the two limiting cases, the slow variation close to the adiabatic regime, and the fastest possible change – a parametric kick, i.e. discontinuous jump (of a parameter), where some exact analytic results are obtained (the so-called PR property, and ABR property). For the linear oscillator the distribution of the energy is always, rigorously, the arcsine distribution, whose variance can in general be calculated by the linear WKB method, while in nonlinear systems there is no such universality. We calculate the Gibbs entropy for the ensembles of noninteracting nonlinear oscillator, which gives the right equipartition and thermostatic laws even for one degree of freedom.  相似文献   

8.
The generatrix of a nonlinearly vibrating charged drop of a viscous incompressible conducting liquid is found by directly expanding the equilibrium spherical shape of the drop in the amplitude of initial multimode deformation up to second-order terms. A fact previously unknown in the theory of nonlinear interaction is discovered: the energy of an initially excited vibration mode of a low-viscosity liquid drop is gradually (within several vibrations periods) transferred to the mode excited by only nonlinear interaction. Irrespectively of the form of the initial deformation, an unstable viscous drop bearing a charge slightly exceeding the critical Rayleigh value takes the shape of a prolate spheroid because of viscous damping of all the modes (except for the fundamental one) for a characteristic time depending on the damping rates of the initially excited modes and the further evolution of the drop is governed by the fundamental mode. In a high-viscosity drop, the rate of rise of the unstable fundamental mode amplitude does not increase continuously with time, contrary to the predictions of nonlinear analysis in terms of the ideal liquid model: it first decreases to a value slightly differing from zero (which depends on the extent of supercriticality of the charge and viscosity of the liquid), remains small for a while (the unstable mode amplitude remains virtually time-independent), and then starts growing.  相似文献   

9.
A theory of time-dependent nonlinear dispersive equations of the Schr?dinger or Gross-Pitaevskii and Hartree type is developed. The short, intermediate and large time behavior is found, by deriving nonlinear master equations (NLME), governing the evolution of the mode powers, and by a novel multitime scale analysis of these equations. The scattering theory is developed and coherent resonance phenomena and associated lifetimes are derived. Applications include Bose-Einstein condensate large time dynamics and nonlinear optical systems. The theory reveals a nonlinear transition phenomenon, "selection of the ground state," and NLME predicts the decay of excited state, with half its energy transferred to the ground state and half to radiation modes. Our results predict the recent experimental observations of Mandelik et al. in nonlinear optical waveguides.  相似文献   

10.
We present a detailed analysis of the modulational instability of the zone-boundary mode for one and higher-dimensional Fermi–Pasta–Ulam (FPU) lattices. The growth of the instability is followed by a process of relaxation to equipartition, which we have called the Anti-FPU problem because the energy is initially fed into the highest frequency part of the spectrum, while in the original FPU problem low frequency excitations of the lattice were considered. This relaxation process leads to the formation of chaotic breathers in both one and two space dimensions. The system then relaxes to energy equipartition, on time scales that increase as the energy density is decreased. We supplement this study by considering the nonconservative case, where the FPU lattice is homogeneously driven at high frequencies. Standing and travelling nonlinear waves and solitonic patterns are detected in this case. Finally we investigate the dynamics of the FPU chain when one end is driven at a frequency located above the zone boundary. We show that this excitation stimulates nonlinear bandgap transmission effects.  相似文献   

11.
We perform a detailed numerical study of the transition to equipartition in the Fermi-Pasta-Ulam quartic model and in a class of potentials of given symmetry using the normalized spectral entropy as a probe. We show that the typical time scale for the equipartition of energy among Fourier modes grows linearly with system size: this is the time scale associated with the smallest frequency present in the system. We obtain two different scaling behaviors, either with energy or with energy density, depending on the scaling of the initial condition with system size. These different scaling behaviors can be understood by a simple argument, based on the Chirikov overlap criterion. Some aspects of the universality of this result are investigated: symmetric potentials show a similar transition, regulated by the same time scale.  相似文献   

12.
We study the long-time evolution of waves of a thin elastic plate in the limit of small deformation so that modes of oscillations interact weakly. According to the theory of weak turbulence (successfully applied in the past to plasma, optics, and hydrodynamic waves), this nonlinear wave system evolves at long times with a slow transfer of energy from one mode to another. We derive a kinetic equation for the spectral transfer in terms of the second order moment. We show that such a theory describes the approach to an equilibrium wave spectrum and represents also an energy cascade, often called the Kolmogorov-Zakharov spectrum. We perform numerical simulations that confirm this scenario.  相似文献   

13.
Based on the existence and uniqueness theorem for random wave equations, we consider asymptotic behaviors of solutions to the random initial value problem. We describe conditions for the equipartition of stochastic energy (or SE for short) by making use of the random spectral theory and, according to Goldstein's semigroup method, we prove the asymptotically equipartitioned SE theorem and the so-called virial theorem of classical mechanics, and also study the probabilistic characterization of the conditions for equipartition. In addition, we show at last the equipartition of SE from a finite time onwards.  相似文献   

14.
We develop a resonance theory to describe the evolution of open systems with time-dependent dynamics. Our approach is based on piecewise constant Hamiltonians: we represent the evolution on each constant bit using a recently developed dynamical resonance theory, and we piece them together to obtain the total evolution. The initial state corresponding to one time-interval with constant Hamiltonian is the final state of the system corresponding to the interval before. This results in a non-Markovian dynamics. We find a representation of the dynamics in terms of resonance energies and resonance states associated to the Hamiltonians, valid for all times t≥0 and for small (but fixed) interaction strengths. The representation has the form of a path integral over resonances. We present applications to a spin-fermion system, where the energy levels of the spin may undergo rather arbitrary crossings in the course of time. In particular, we find the probability for transition between ground- and excited state at all times.  相似文献   

15.
We introduce a topology-based nonlinear network model of protein dynamics with the aim of investigating the interplay of spatial disorder and nonlinearity. We show that spontaneous localization of energy occurs generically and is a site-dependent process. Localized modes of nonlinear origin form spontaneously in the stiffest parts of the structure and display site-dependent activation energies. Our results provide a straightforward way for understanding the recently discovered link between protein local stiffness and enzymatic activity. They strongly suggest that nonlinear phenomena may play an important role in enzyme function, allowing for energy storage during the catalytic process.  相似文献   

16.
The steady-state energy distribution of thermal vibrations at a given ambient temperature has been investigated based on a simple mathematical model that takes into account central and noncentral interactions between carbon atoms in a one-dimensional carbyne chain. The investigation has been performed using standard asymptotic methods of nonlinear dynamics in terms of the classical mechanics. In the first-order nonlinear approximation, there have been revealed resonant wave triads that are formed at a typical nonlinearity of the system under phase matching conditions. Each resonant triad consists of one longitudinal and two transverse vibration modes. In the general case, the chain is characterized by a superposition of similar resonant triplets of different spectral scales. It has been found that the energy equipartition of nonlinear stationary waves in the carbyne chain at a given temperature completely obeys the standard Rayleigh–Jeans law due to the proportional amplitude dispersion. The possibility of spontaneous formation of three-frequency envelope solitons in carbyne has been demonstrated. Heat in the form of such solitons can propagate in a chain of carbon atoms without diffusion, like localized waves.  相似文献   

17.
We present a detailed analysis of the modulational instability of the zone-boundary mode for one and higher-dimensional Fermi-Pasta-Ulam (FPU) lattices. Following this instability, a process of relaxation to equipartition takes place, which we have called the Anti-FPU problem because the energy is initially fed into the highest frequency part of the spectrum, at variance with the original FPU problem (low frequency excitations of the lattice). This process leads to the formation of chaotic breathers in both one and two dimensions. Finally, the system relaxes to energy equipartition on time scales which increase as the energy density is decreased. We show that breathers formed when cooling the lattice at the edges, starting from a random initial state, bear strong qualitative similarities with chaotic breathers.  相似文献   

18.
We study the dynamics of the discrete nonlinear Schr?dinger lattice initialized such that a very long transitory period of time in which standard Boltzmann statistics is insufficient is reached. Our study of the nonlinear system locked in this non-Gibbsian state focuses on the dynamics of discrete breathers (also called intrinsic localized modes). It is found that part of the energy spontaneously condenses into several discrete breathers. Although these discrete breathers are extremely long lived, their total number is found to decrease as the evolution progresses. Even though the total number of discrete breathers decreases we report the surprising observation that the energy content in the discrete breather population increases. We interpret these observations in the perspective of discrete breather creation and annihilation and find that the death of a discrete breather cause effective energy transfer to a spatially nearby discrete breather. It is found that the concepts of a multi-frequency discrete breather and of internal modes is crucial for this process. Finally, we find that the existence of a discrete breather tends to soften the lattice in its immediate neighborhood, resulting in high amplitude thermal fluctuation close to an existing discrete breather. This in turn nucleates discrete breather creation close to a already existing discrete breather. Received 21 January 1999 and Received in final form 20 September 1999  相似文献   

19.
We first propose fundamental solutions of wave propagation in dispersive chain subject to a localized initial perturbation in the displacement. Analytical solutions are obtained for both second order nonlinear dispersive chain and homogenous harmonic chain using stationary phase approximation. Solution is also compared with numerical results from molecular dynamics(MD) simulations. Locally dominant phonon modes(k-space) are introduced based on these solutions. These locally defined spatially and temporally varying phonon modes k(x, t) are critical to the concept of the local thermodynamic equilibrium(LTE). Wave propagation accompanying with the nonequilibrium dynamics leads to the excitation of these locally defined phonon modes. It is found that the system energy is gradually redistributed among these excited phonons modes(k-space). This redistribution process is only possible with nonlinear dispersion and requires a finite amount of time to achieve a steady state distribution. This time scale is dependent on the spatial distribution(or frequency content) of the initial perturbation and the dispersion relation. Sharper and more concentrated perturbation leads to a faster energy redistribution and dissipation. This energy redistribution generates localized phonons with various frequencies that can be important for phonon-phonon interaction and energy dissipation in nonlinear systems.Depending on the initial perturbation and temperature, the time scale associated with this energy distribution can be critical for energy dissipation compared to the Umklapp scattering process. Ballistic type of heat transport along the harmonic chain reveals that at any given position, the lowest mode(k = 0) is excited first and gradually expanding to the highest mode(kmax(x, t)), where kmax(x, t) can only asymptotically approach the maximum mode kBof the first Brillouin zone(kmax(x, t) → kB). No energy distributed into modes with kmax(x, t) k kBdemonstrates that the local thermodynamic equilibrium cannot be established in harmonic chain. Energy is shown to be uniformly distributed in all available phonon modes k ≤ kmax(x, t) at any position with heat transfer along the harmonic chain. The energy flux along the chain is shown to be a constant with time and proportional to the sound speed(ballistic transport).Comparison with the Fourier's law leads to a time-dependent thermal conductivity that diverges with time.  相似文献   

20.
We consider nonlinear gravity-capillary waves with the nonlinearity parameter ? ~ 0.1–0.25. For this nonlinearity, time scale separation does not occur and the kinetic wave equation does not hold. An energy cascade in this case is built at the dynamic time scale (D-cascade) and is computed by the increment chain equation method first introduced in [15]. We for the first time compute an analytic expression for the energy spectrum of nonlinear gravity-capillary waves as an explicit function of the ratio of surface tension to the gravity acceleration. We show that its two limits—pure capillary and pure gravity waves on a fluid surface—coincide with the previously obtained results. We also discuss relations of the D-cascade model with a few known models used in the theory of nonlinear waves such as Zakharov’s equation, resonance of modes with nonlinear Stokes-corrected frequencies, and the Benjamin-Feir index. These connections are crucial in understanding and forecasting specifics of the energy transport in a variety of multicomponent wave dynamics, from oceanography to optics, from plasma physics to acoustics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号