首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
The X-ray spectrometer used in high-energy-density plasma experiments generally requires both broad X-ray energy coverage and high temporal, spatial, and spectral resolutions for overcoming the difficulties imposed by the X-ray back- ground, debris, and mechanical shocks. By using an elliptical crystal together with a streak camera, we resolve this issue at the SG-II laser facility. The carefully designed elliptical crystal has a broad spectral coverage with high resolution, strong rejection of the diffuse and/or fluorescent background radiation, and negligible source broadening for extended sources. The spectra that are Bragg reflected (23° 〈 θ 〈 38°) from the crystal are focused onto a streak camera slit 18 mm long and about 80 μm wide, to obtain a time-resolved spectrum. With experimental measurements, we demonstrate that the quartz(1011) elliptical analyzer at the SG-II laser facility has a single-shot spectral range of (4.64-6.45) keV, a typical spectral resolution of E/△E = 560, and an enhanced focusing power in the spectral dimension. For titanium (Ti) data, the lines of interest show a distribution as a function of time and the temporal variations of the He-α and Li-like Ti satellite lines and their spatial profiles show intensity peak red shifts. The spectrometer sensitivity is illustrated with a temporal resolution of better than 25 ps, which satisfies the near-term requirements of high-energy-density physics experiments.  相似文献   

2.
A wide variety of X-ray and extreme ultraviolet diagnostics are being developed to study on Yang acceler- ator.An elliptically bent crystal spectrometer is designed with a focal length of 1350 mm.A mica crystal with an interplanar spacing of 1.984 nm bent onto an elliptical substrate with eccentricity of 0.9485 is used.The crystal analyzer covers the Bragg angle range from 30°to 60°.The mica crystal can efficiently reflect radiation in multiple orders,covering the entire spectral range from 0.1 to 1.73 nm except for a gap from 0.86 to 1.0 nm.The application experiment is performed on Yang accelerator using the bent mica crystal analyzer.Spectra of neon-puff Z-pinch plasmas are recorded with a X-ray film,showing the H-like and the He-like lines of neon.Each spectrum has been identified and used for the wavelength calibration, and most of the line radiation is contained in the He-αand the L-αlines.The experimental results have demonstrated that the spectral resolution approximates 379.  相似文献   

3.
A new high spectral resolution crystal spectrometer is designed to measure very low emissive X-ray spectra of laser-produced plasma in 0.5-0.9 nm range. A large open aperture (30 ×20 (mm)) mica (002) spherically bent crystal with curvature radius R = 380 mm is used as dispersive and focusing element. The imaging plate is employed to obtain high spectral resolution with effective area of 30 × 80 (mm). The long designed path of the X-ray spectrometer beam is 980 mm from the source to the detector via the crystal. Experiment is carried out at a 20-J laser facility. X-ray spectra in an absolute intensity scale is obtained from Al laserproduced plasmas created by laser energy of 6.78 J. Samples of spectra obtained with spectral resolution of up to E/△E - 1500 are presented. The results clearly show that the device is good to diagnose laser high-density plasmas.  相似文献   

4.
A time-resolved multispectral X-ray imaging approach with new version of multi-channel Kirkpatrick- Baez (KB) microscope is developed for laser plasma diagnostics at the kilo joule-class Shenguang-II laser facility (SG-II). The microscope uses a total external reflection mirror in the sagittal direction and an array of multilayer mirrors in the tangential direction to obtain multiple individual high-resolution, high- throughput, and quasi-monochromatic X-ray images. The time evolution of the imploded target in multiple X-ray energy bands can be acquired when coupled with an X-ray streak camera. The experimental result of the time-resolved 2.5 and 3.0 keV dual-spectral self-emission imaging of the undoped CH shell target on SG-II is given.  相似文献   

5.
K-shell X-ray emission from a Cu nanowire target irradiated by an ultraintense femtosecond laser pulse is studied using an elliptically bent quartz crystal and imaging plate. The designed bent crystal spectrometer has better spectral resolution, which is higher than 1 000. The absolute Kα radiation photon yields are obtained from the experimental results and the Monte-Carlo model. The conversion efficiency of the Cu Kα line is estimated to be 0.019% from the interaction of 4 J, 50-fs laser pulse irradiated on a Cu nanowire target. The high yield of K shell X-ray has important applications in X-ray emission source.  相似文献   

6.
In order to measure spatially and temporarily resolved laser-produced plasma X-ray spectra in 0.2 - 2 nm region, a novel two-channel elliptically-bent crystal spectrograph has been developed. Dispersive elements are LiF, PET, Mica, and KAP crystals, which cover Bragg angles in the range of 30 - 67.5 degrees. Eccentricity and focal distance of twin ellipses are 0.9586 and 1350 mm, respectively. Spatially resolved spectrum is photographically recorded with an X-ray film or X-CCD camera in one channel, and temporarily resolved one is photographically recorded with an X-ray streak camera in another channel, thus spatially and temporarily resolved spectra can be simultaneously obtained. Spectral images were acquired with X-CCD and PET in SHENGUANG-II laser facility, and experimental results show that the spectral resolution of the spectrograph is about 0.002 nm.  相似文献   

7.
A four-channel Kirkpatrick–Baez microscope working at multiple energy bands is developed for multiframe X-ray imaging diagnostics at the Shenguang-II laser facility. The response to the multiple energy bands is realized by coating the double-periodic multilayers on the reflected surfaces of the microscope. Because of the limited size of the microstrips in the X-ray framing camera, the image separation is controlled by the conical angle of the reference cores during microscope assembly. This study describes the optical and multilayer design, assembly, and alignment of the developed microscope. The microscope achieves a spatial resolution of 4–5 mm in the laboratory and 10–20 mm at Shenguang-II laser facility within a 300 mm field of view. The versatile nature of the developed microscope enables the multiple microscopes currently installed in the laser facility to be replaced with a single, multipurpose microscope.  相似文献   

8.
An aberration-free imaging technique was used to design a double-spherically bent crystal spectrometer with high energy and spatial resolutions to ensure that the individual spectral lines are represented as perfectly straight lines on the detector. After obtaining the matched parameters of the two crystals via geometry-based optimization, an alignment method was employed to allow the spacing between the crystals and the detector to be coupled with the source. The working principle of this spectrum-measuring scheme was evaluated using a Cu X-ray tube. High-quality spectra with energy resolutions(E/ΔE) of approximately 3577 were obtained for a relatively large source size.  相似文献   

9.
The elliptical reflection zone plate is a kind of optical element in soft x-ray and x-ray ranges and has focusing and dispersion properties. Compared with a transmission zone plate, the required dispersion ordei, can be easily separated from zeroth order diffraction. It is fabricated on a bulk substrate and does not have much difficulty in the fabrication process. We design a 1000-zone off-axis elliptical reflection zone plate for the rnonochromatization of the ultrafast betatron radiation at the low energy band, at the designed wavelength of 2.478 nm (500eV) which is an important spectral part of the betatron radiation, with high spatial resolution, high spectral resolution. Moreover, we simulate the designed reflection zone plate properties. The simulation results show that the spatial resolutions in the spatial direction and the spectral direction are 6.4μm and 7.3μm (full width half maximum), respectively,, and the spectral resolution reaches up to 496 for the well aligned point source system, which is in good agreement with the theoretical predictions. In addition, we discuss some factors influencing the spectral and spatial resolution, such as the zone number, zone area and the incidence wavelength. The elliptical reflection zone plate also has potential applications in investigating x-ray fluorescence spectra and other fields.  相似文献   

10.
Based on the frequency-to-time mapping relation of the linearly chirped pulse, the temporal phase shift induced by a laser-excited wake in a helium gas jet is measured using a chirped-pulse spectral interferometry with ~140 fs resolution over a temporal region of 1 ps in a single shot. In this measurement, the image of the wake is obtained with one-dimensional spatial resolution and temporal resolution limited only by the bandwidth and chirp of the pulse. The ‘bubbles' feature of the wake structure,along with multiple wakes excited by the main lobe and the side lobe of a laser focal-spot, is captured simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号