首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Vocal intensity is studied as a function of fundamental frequency and lung pressure. A combination of analytical and empirical models is used to predict sound pressure levels from glottal waveforms of five professional tenors and twenty five normal control subjects. The glottal waveforms were obtained by inverse filtering the mouth flow. Empirical models describe features of the glottal flow waveform (peak flow, peak flow derivative, open quotient, and speed quotient) in terms of lung pressure and phonation threshold pressure, a key variable that incorporates the Fo dependence of many of the features of the glottal flow. The analytical model describes the contributions to sound pressure levels SPL by the vocal tract. Results show that SPL increases with Fo at a rate of 8-9 dB/octave provided that lung pressure is raised proportional to phonation threshold pressure. The SPL also increases at a rate of 8-9 dB per doubling of excess pressure over threshold, a new quantity that assumes considerable importance in vocal intensity calculations. For the same excess pressure over threshold, the professional tenors produced 10-12 dB greater intensity than the male nonsingers, primarily because their peak airflow was much higher for the same pressure. A simple set of rules is devised for predicting SPL from source waveforms.  相似文献   

2.
Laryngeal aerodynamic and acoustic characteristics of African American voice production were examined from vowel samples produced by ten adult female and ten adult male speakers. The data were compared with that for a control group consisting of ten adult female and ten adult male White speakers, matched for age, height, and weight. All measures were analyzed using Cspeech 4.0. Aerodynamic measurements, extracted from a glottal airflow waveform, included maximum flow declination rate, alternating glottal airflow, minimum glottal airflow, and airflow open quotient. Acoustic measures included fundamental frequency and sound pressure level. No significant mean differences between the African American and White speakers were found, except for maximum-flow declination rate. The White speakers produced significantly higher declination rates than the African American speakers. The factor of sex for the African American speakers was statistically significant for the measures of maximum-flow declination rate, alternating glottal airflow, open quotient, and fundamental frequency, consistent with the functioning of the White speakers. The results suggest that during vowel production, where the vocal tract is in a fairly static position, acoustic and aerodynamic characteristics for African American and White Speakers are comparable.  相似文献   

3.
Phonation threshold pressure has previously been defined as the minimum lung pressure required to initiate phonation. By modeling the dependence of this pressure on fundamental frequency, it is shown that relatively simple aerodynamic relations for time-varying flow in the glottis are obtained. Lung pressure and peak glottal flow are nearly linearly related, but not proportional. For this reason, traditional power law relations between vocal power and lung pressure may not hold. Glottal impendance for time-varying flow should be defined differentially rather than as a simple ratio between lung pressure and peak flow. It is shown that the peak flow, the peak flow derivative, the open quotient, and the speed quotient of inverse-filtered glottal flow waveforms all depend explicitly on phonation threshold pressure. Data from singers are compared with those from nonsingers. The primary difference is that singers obtain two to three times greater peak flow for a given lung pressure, suggesting that they adjust their glottal or vocal tract impedance for optimal flow transfer between the source and the resonantor.  相似文献   

4.
Subglottal pressure is one of the main voice control factors, controlling vocal loudness. In this investigation the effects of subglottal pressure variation on the voice source in untrained female and male voices phonating at a low, a middle, and a high fundamental frequency are analyzed. The subjects produced a series of /pae/ syllables at varied degrees of vocal loudness, attempting to keep pitch constant. Subglottal pressure was estimated from the oral pressure during the /p/ occlusion. Ten subglottal pressure values, approximately equidistantly spaced within the pressure range used, were identified, and the voice source of the vowels following these pressure values was analyzed by inverse filtering the airflow signal as captured by a Rothenberg mask. The maximum flow declination rate (MFDR) was found to increase linearly with subglottal pressure, but a given subglottal pressure produced lower values for female than for male voices. The closed quotient increased quickly with subglottal pressure at low pressures and slowly at high pressures, such that the relationship can be approximated by a power function. For a given subglottal pressure value, female voices reached lower values of closed quotient than male voices.  相似文献   

5.
Measurements on the inverse filtered airflow waveform (the "glottal waveform") and of estimated average transglottal pressure and glottal airflow were made from noninvasive recordings of productions of syllable sequences in soft, normal, and loud voice for 25 male and 20 female speakers. Statistical analyses showed that with change from normal to loud voice, both males and females produced loud voice with increased pressure, accompanied by increased ac flow and increased maximum airflow declination rate. With change from normal voice, soft voice was produced with decreased pressure, ac flow and maximum airflow declination rate, and increased dc and average flow. Within the loudness conditions, there was no significant male-female difference in air pressure. Several glottal waveform parameters separated males and females in normal and loud voice. The data indicate higher ac flow and higher maximum airflow declination rate for males. In soft voice, the male and female glottal waveforms were more alike, and there was no significant difference in maximum airflow declination rate. The dc flow did not differ significantly between males and females. Possible relevance to biomechanical differences and differences in voice source characteristics between males and females and across loudness conditions is discussed.  相似文献   

6.
A new numerical model of the vocal folds is presented based on the well-known two-mass models of the vocal folds. The two-mass model is coupled to a model of glottal airflow based on the incompressible Navier-Stokes equations. Glottal waves are produced using different initial glottal gaps and different subglottal pressures. Fundamental frequency, glottal peak flow, and closed phase of the glottal waves have been compared with values known from the literature. The phonation threshold pressure was determined for different initial glottal gaps. The phonation threshold pressure obtained using the flow model with Navier-Stokes equations corresponds better to values determined in normal phonation than the phonation threshold pressure obtained using the flow model based on the Bernoulli equation. Using the Navier-Stokes equations, an increase of the subglottal pressure causes the fundamental frequency and the glottal peak flow to increase, whereas the fundamental frequency in the Bernoulli-based model does not change with increasing pressure.  相似文献   

7.
Ten normal female subjects produced syllables at 5 dB increments from soft to loud. The differentiated electroglottogram (dEGG) open and speed quotients were compared to similar quotients from the inverse-filtered airflow waveform. The latter were measured according to objective and subjective criteria. The data indicate that the open quotient from the airflow waveform decreased as the intensity increased. The dEGG open quotient did not demonstrate this trend. The speed quotient from airflow increased initially with vocal intensity and decreased again as the intensity ceiling was approached. The ratio of closing to opening slopes calculated from peaks in the dEGG signal followed a similar pattern. While the trends across intensity conditions were found to correspond for several of the measures, the absolute values obtained using the different methodologies were not comparable.  相似文献   

8.
Measurements on the inverse filtered airflow waveform and of estimated average transglottal pressure and glottal airflow were made from syllable sequences in low, normal, and high pitch for 25 male and 20 female speakers. Correlation analyses indicated that several of the airflow measurements were more directly related to voice intensity than to fundamental frequency (F0). Results suggested that pressure may have different influences in low and high pitch in this speech task. It is suggested that unexpected results of increased pressure in low pitch were related to maintaining voice quality, that is, avoiding vocal fry. In high pitch, the increased pressure may serve to maintain vocal fold vibration. The findings suggested different underlying laryngeal mechanisms and vocal adjustments for increasing and decreasing F0 from normal pitch.  相似文献   

9.
Noninvasive measures of vocal fold activity are useful for describingnormal and disordered voice production. Measures of open and speed quotient from glottal airflow and electroglottographic (EGG) waveforms have been used to describe timing events associated with vocal fold vibration. To date, there has been little consistency in the measurement criteria used to calculate quotient values. In this study, criteria of 20% and 50% were applied to the AC amplitude of glottal airflow and inverted EGG waveforms for measurement of open quotient. Criteria of 20%, 50%, and 80%, and a midslope criterion that segmented the waveform between 20% and 80% of the waveform amplitude, were used for the calculation of speed quotient. Subjects produced waveforms at sound pressure levels (SPL) of 70, 75, 80 and 85 dB. Results indicated that approximations of open quotient obtained from the glottal airflow waveform significantly decreased using both the 20% and 50% criteria as SPL increased from 80 to 85 dB. No significant changes were found in open quotient from the EGG waveform as a function of SPL. Results of speed quotient measures from the glottal airflow and EGG waveforms showed a generally increasing trend as SPL increased, although the differences were not statistically significant. The data suggest that the signal type, measurement criterion and SPL must be considered in interpreting quotient measures.  相似文献   

10.
This article describes experiments carried out in order to gain a deeper understanding of the mechanisms underlying variation of vocal loudness in singers. Ten singers, two of whom are famous professional opera tenor soloists, phonated at different pitches and different loudnesses. Their voice source characteristics were analyzed by inverse filtering the oral airflow signal. It was found that the main physiological variable underlying loudness variation is subglottal pressure (Ps). The voice source property determining most of the loudness variation is the amplitude of the negative peak of the differentiated flow signal, as predicted by previous research. Increases in this amplitude are achieved by (a) increasing the pulse amplitude of the flow waveform; (b) moving the moment of vocal fold contact earlier in time, closer to the center of the pulse; and (c) skewing the pulses. The last mentioned alternative seems dependent on both Ps and the ratio between the fundamental frequency and the first formant. On the average, the singers doubled Ps when they increased fundamental frequency by one octave, and a doubling of the excess Ps over threshold caused the sound pressure level (SPL) to increase by 8–9 dB for neutral phonation, less if mode of phonation was changed to pressed. A shift of mode of phonation from flow over neutral to pressed was associated with a reduction of the peak glottal permittance i.e., the ratio between peak transglottal airflow to Ps. Flow phonation had the most favorable relationship between Ps and SPL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号