首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
刘岩  冯双青 《应用声学》2000,19(3):33-34
采用频率为1.8MHz,声强为1-5W/cm2的超声波引发水中的空化效应,通过采用吡啶溶液作为HO2自由基捕获剂,测出了实验条件下空化水中HO2自由基的浓度水平为10-5M。  相似文献   

2.
运用密度泛函的B3LYP方法及CBS-QB3方法对HO2NO2(过氧硝酸,PNA)与OH自由基的反应进行了理论研究. 结果表明, 在计算所得的势能面曲线上存在五个产物通道,分别为H2O+NO2+O2、HOOH+NO3、NO2+HO3H、HO2+HONO2和HO2+HOONO. 对这五个通道分别进行了详细的研究,其中最主要的反应通道为:PNA+OH!M1!TS1!H2O+NO2+O2. 采用了一个准平衡近似的方法并运用CBS-QB3基础上的能量计算得到了300K下此反应路径的速率常数值为1.13 £10-1  相似文献   

3.
十二烷基苯磺酸钠的超声降解研究   总被引:18,自引:2,他引:16       下载免费PDF全文
刘岩 《应用声学》1999,18(2):35-37
采用频率为1.8MHz,声强近似为5W·cm~-2的超声波,在固定式声化学的应器内研究了初始浓度为200mg/L-400mg/L的十二烷基苯磺酸钠(DBS)溶液的声化学降解情况.实验表明,浓度的改变对TOC的削减率无明显的影响,溶液的PH值对降解率则有显著影响,碱性条件下(PH=13),DBS几乎无降解,酸性条件下(PH=3)TOC削减率≤10%.通过分析降解过程中溶液的紫外光谱(190-340nm),发现降解过程中有复杂的中间产物生成,包括小分子烃类碎片及硝基化合物。我们认为,能使溶液表面张力。降低的表面活性剂,其声化学降解率低的原因在于,溶液表面张力下降后影响了溶液中空化效应的产生,从而降低了溶液中声化学反应的强度,致使TOC削减率不高。  相似文献   

4.
利用光谱学和波谱学手段研究HRP-NADH-O2/H2O2体系中自由基生成机理及HRP状态的变化,并应用该酶体系对有机污染物氯苯进行初步处理研究。紫外可见光谱表明酶-辅酶体系在过氧化氢的氧化下,产生了强氧化性的化合物Ⅲ,说明可能产生羟基自由基。分别选用DMPO和POBN两种自由基捕获剂,通过电子自旋顺振(EPR)检测到HRP+NADH体系在O2和H2O2存在下产生超氧阴离子自由基(O2-·)和羟自由基(·OH)。在开始10min内过氧化物酶主要以化合物Ⅲ形式存在,随后转化为HRP,同时检测出较高浓度的·OH。O2存在条件下产生·OH浓度大约是单独H2O2存在条件下的4倍。超氧化物歧化酶(SODZn-Cu)在HRP+NADH+O2体系中能消除由NADH还原O2产生的O2-·从而抑制·OH生成。HRP+NADH体系相对于传统酶法处理能提高20%左右的酶活力,说明酶-辅酶体系能够提高酚类化合物的去除效率。实验条件下HRP+NADH+H2O2和HRP+NADH+H2O2+O2体系对于非酚类污染物氯苯的去除率分别到达了24.6%和48.2%,远高于传统酶法的1.42%,突破了传统酶处理只能处理酚类污染物的局限性。  相似文献   

5.
利用光谱学和波谱学手段研究HRP-NADH-O2/H2O2体系中自由基生成机理及HRP状态的变化,并应用该酶体系对有机污染物氯苯进行初步处理研究.紫外可见光谱表明酶辅酶体系在过氧化氢的氧化下,产生了强氧化性的化合物III,说明可能产生羟基自由基.分别选用DMPO和POBN两种自由基捕获剂,通过电子自旋顺振(EPR)检测到HRP+NADH体系在O2和H2O2存在下产生超氧阴离子自由基(O2-)和羟自由基(·OH).在开始10 min内过氧化物酶主要以化合物III形式存在,随后转化为HRP,同时检测出较高浓度的·OH.O2有存在条件下产生·OH浓度大约是单独H2O2存在条件下的4倍.超氧化物歧化酶(SOD Zn-Cu)在HRP+NADH+O2体系中能消除由NADH还原O2产生的(O2-.从而抑制·OH生成.HRP+NADH体系相对于传统酶法处理能提高20%左右的酶活力,说明酶-辅酶体系能够提高酚类化合物的去除效率.实验条件下HRP+NADH+ H2O2和HRP+NADH十H2O2+O2体系对于非酚类污染物氯苯的去除率分别到达了24.6%和48.20,,远高于传统酶法的1.42%,突破了传统酶处理只能处理酚类污染物的局限性.  相似文献   

6.
OH自由基是大气中最重要的氧化剂,准确测量对流层OH自由基的浓度是厘清我国二次污染形成机理的关键.本文介绍了一种基于同步光解的OH自由基便携式标定方法,使用汞灯的185 nm线辐射处于层流状态下的具有一定水汽浓度的合成空气,光解HO2和O2定量产生确定浓度的OH, HO2自由基和O3.开展了臭氧浓度及廓线分布因子P和氧气吸收截面等影响因素的准确测量,降低该标定方法的不确定度.进一步构建便携式标定装置,建立应用于实际外场标定的OH自由基浓度快速获取方法.开展基于激光诱导荧光技术OH自由基(LIF-OH)探测系统的准确标定测试,准确产生3×10^8-2.8×10^9 cm^-3浓度的OH自由基, LIF-OH探测系统的荧光信号与自由基浓度具有非常好的相关性.在综合外场观测(STORM)的应用中该标定装置的不确定度为13.0%,具有良好的稳定性和准确性,可以用于复杂外场环境下LIF-OH系统的快速标定.  相似文献   

7.
腐植酸溶液声化学降解过程中的紫外光谱研究   总被引:1,自引:1,他引:0  
研究了腐植酸溶液超声声化学降解过程中近紫外光谱在190-320 nm间的变化,证明超声波对腐植酸有明显的降解作用,并测定了降解过程中不同pH值条件下TOC的变化,对降解过程的自由基氧化历程进行了分析。  相似文献   

8.
对COIL中碱性过氧化氢(BHP)溶液中的HO2^-浓度进行了理论计算和实验测量。得到了HO2^-浓度随不同浓度的KOH和H2O2以及不同比例(体积)配比的变化规律,并做了不同浓度HO2^-对氯的利用率和激光输出功率影响的实验,获得的结果对优化BHP的配制和优化实验参数有较大的意义。  相似文献   

9.
黄酮配合物抗自由基活性的亚甲基蓝光谱测定体系的研究   总被引:4,自引:1,他引:3  
亚甲基蓝(MB)可捕获Fenton反应产生的羟自由基生成无色加合物,选用亚甲基蓝为槲皮素(Que)及其配合物抗羟自由基活性测定体系的指示剂.实验优化测试条件为:体系pH 8.0,加入H2O2溶液(0.3%)0.50 mL,FeSO4溶液(5 mmol·L-1)0.50 mL和MB溶液(2.56×10-5 mol·L-1)1.0 mL.由此建立了测定槲皮素配合物抗·OH活性的光谱测定方法.方法简便,尤其适合于配合物体系抗自由基活性的分析.测定了槲皮素及Que-Zn(Ⅱ),Que-Cu(Ⅱ),Que-Fe(Ⅲ)配合物的抗·OH活性.结果表明3种槲皮素配合物的抗羟自由基活性均比槲皮素高,配合物活性Que-Cu(Ⅱ)>Que-Zn(Ⅱ)>Que-Fe(Ⅲ),表现出金属离子与有机活性配体协同作用可提高其抗氧化活性的能力.  相似文献   

10.
以结晶四氯化锡(SnCl4·5H2O)和乙酸钡[Ba(CH3COO)2]为原料,以有机碱四甲基氢氧化铵N (CH3)4OH为矿化剂,采用共沉淀法制备BaSnO3光催化剂,并研究了其对亚甲基蓝溶液的光催化性能.结果表明:在可见光照射下,BaSnO3光催化剂对亚甲基蓝溶液有明显的光催化降解作用.当催化剂浓度为40mg/L,反应时间为100min时,降解率可达93%以上.  相似文献   

11.
Sonolysis of aqueous 4-nitrophenol at low and high pH   总被引:11,自引:0,他引:11  
The sonolysis of 4-nitrophenol in argon-saturated aqueous solution has been studied at 321 kHz. In order to evaluate separately the effect of OH radicals that are formed in the cavitational bubble and part of which react in the aqueous phase with this substrate, radiolytic studies in N2O-saturated solutions were carried out for comparison. A detailed product study of the sonolysis of 4-nitrophenol solutions shows that at pH 10, where 4-nitrophenol is deprotonated (pKa = 7.1), its sonolytic degradation is fully accounted for by OH-radical-induced reactions in the aqueous phase. At this pH, the sonolytic yield of H2O2 resulting from OH radical recombination in the solution, measured as a function of the 4-nitrophenol concentration, is reduced in line with the scavenging capacity of the 4-nitrophenolate. In contrast, at pH 4 the formation of H2O2 is already fully suppressed when the solution is 7 x 10(-4) mol dm-3 in 4-nitrophenol, and oxidative-pyrolytic degradation predominates, as exemplified by the large yields of CO and CO2 which are accompanied by a large H2 yield. The basis of this difference in behavior is a hydrophobic enrichment of 4-nitrophenol (which is undissociated at pH 4) at the interface of the cavitational bubble by a factor of about 80. The pH dependence of the yields of the pyrolytic products reflects the hydrolytic equilibrium concentration of 4-nitrophenol. The paper also demonstrates that the complexity of this sonochemical system precludes its use a gauge to determine the temperature in the interior of the cavitational bubble.  相似文献   

12.
钠基膨润土与羟基铁溶液反应,经过焙烧,制得性能良好的纳米复合型催化剂,结合比表面孔隙分析(BET)、X射线衍射谱(XRD)和高分辨扫描电镜(HRTEM)对催化剂的比表面积、晶相和粒度进行表征.用光度法对该催化剂降解染料罗丹明B进行了研究,详细考察了溶液起始pH值、H2O2浓度、催化剂用量和起始浓度对降解的影响以及催化剂的可重复使用性,紫外-可见光谱对降解过程进行跟踪检测,并对复相光助Fenton过程与均相光助Fenton过程进行了比较.结果表明,复合型催化剂具有很高的比表面积,铁以高催化活性的α-Fe2O3存在于复合催化剂中;在pH 3.0,催化剂浓度为0.3 g·L-1,H2O2浓度为10 mmol·L-1实验条件下,100 mL 2.5×10-5mol·L-1罗丹明B,紫外光照射4 h后,紫外-可见光谱显示罗丹明B的特征峰消失,其脱色率和CODcr去除率分别为97%和71%,对该催化剂进行处理后,可以重复使用,复相光降解率要远大于均相光降解率.  相似文献   

13.
Li HT  Li YP  Cao HB  Li XG  Xue ZQ 《光谱学与光谱分析》2010,30(11):3119-3123
The mechanism of radical generation in HRP-NADH-O2/H2O2 systems and state-change of horseradish peroxidase (HRP) was investigated by using ESR and UV measurements, and the novel enzyme-coenzymatic systems were performed to degrade chlorobenzene as a non-phenolic persistent organic pollutants. The UV results showed that compound III was produced from HRP oxidized by hydrogen peroxide with the catalysis of NADH, which would generate hydroxyl radical. The ESR results demonstrated the production of *OH and O2-. in enzyme-coenzymatic system in the presence of O2 or H2O2 with DMPO and POBN as spin-trappers, respectively. In HRP-NADH-H2O2 system, compound III was the main state of HRP in the initial 10 min, and then converted to HRP with generating hydroxyl radical; and after the addition of oxygen, the production of hydroxyl radical was promoted rapidly, as 4 times as that of the system in absence of oxygen. The addition of SOD(Zn-Cu) decreased the production of hydroxyl radical significantly, resulting from that SOD eliminated O2 reduction to O2-. by NADH and then inhibited *OH formation. The results showed that NADH could improve by about 20% enzyme activity of HRP for phenol removal. The removal of chlorobenzene with HRP-NADH-H2O2 and HRP-NADH-H2O2-O2 systems reached 24.6% and 48.2%, respectively, which was much higher than that with traditional enzymatic system (1.42%), showing a promising prospect in proposal  相似文献   

14.
The degradation of 4-chlorophenol (4-CP) in aqueous media by 516 kHz ultrasonic irradiation was investigated in order to clarify the degradation mechanism. The degradation of concentrated 4-CP solution by means of ultrasound, UV irradiation and their combined application was also studied. The obtained results indicate that *OH radical are the primary reactive species responsible for 4-CP ultrasonic degradation. Very little 4-CP degradation occurs if the sonolysis is carried out in the presence of the *OH radical scavenger tert-butyl alcohol, also indicating that little or no pyrolysis of the compound occurs. The dominant degradation mechanism is the reaction of substrate with *OH radicals at the gas bubble-liquid interface rather than high temperature direct pyrolysis in ultrasonic cavities. This mechanism can explain the lower degradation rate of the ionic form of 4-CP that is partly due to the rapid dissociation of *OH radicals in alkaline solutions. The sonochemical destruction of concentrated 4-CP aqueous solution is obtained with low rate. Coupling photolysis with ultrasound irradiation results in increased efficiency compared to the individual processes operating at common conditions. Interestingly, the photosonochemical decomposition rate constant is greater than the additive rate constants of the two processes. This may be the result of three different oxidative processes direct photochemical action, high frequency sonochemistry and reaction with ozone produced by UV irradiation of air, dissolved in liquid phase because of the geyser effect of ultrasound streaming. Additionally, the photodecomposition, at 254 nm, of hydrogen peroxide produced by ultrasound generating *OH radical can partly explain the destruction enhancement.  相似文献   

15.
Sonochemical and sonocatalytic degradation of monolinuron in water   总被引:1,自引:0,他引:1  
The degradation of the phenylurea monolinuron (MLN) by ultrasound irradiation alone and in the presence of TiO(2) was investigated in aqueous solution. The experiments were carried out at low and high frequency (20 and 800 kHz) in complete darkness. The degradation of MLN by ultrasounds occurred mainly by a radical pathway, as shown the inhibitory effect of adding tert-butanol and bicarbonate ions to scavenge hydroxyl radicals. However, CO(3)(-) radicals were formed with bicarbonate and reacted in turn with MLN. In this study, the degradation rate of MLN and the rate constant of H(2)O(2) formation were used to evaluate the oxidative sonochemical efficiency. It was shown that ultrasound efficiency was improved in the presence of nanoparticles of TiO(2) and SiO(2) only at 20 kHz. These particles provide nucleation sites for cavitation bubbles at their surface, leading to an increase in the number of bubbles when the liquid is irradiated by ultrasound, thereby enhancing sonochemical reaction yield. In the case of TiO(2), sonochemical efficiency was found to be greater than with SiO(2) for the same mass introduced. In addition to the increase in the number of cavitation bubbles, activated species may be formed at the TiO(2) surface that promote the formation of H(2)O(2) and the decomposition of MLN.  相似文献   

16.
This study investigates the sonolytic degradation mechanism of non-volatile organic compounds and reaction sites for its degradation using various tools that allow OH* to be monitored, such as: the spin-trapping method of OH* detection using non-volatile nitrone trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), the hydrogen peroxide analytical methods and the p-chlorobenzoic acid (pCBA)-probe method. These methods can successfully monitor OH* produced during sonochemical processes, and identify the major reaction sites involving OH* of the three proposed reaction zones--within the cavity, in the bulk solution, and at the gas-liquid interfacial (shell) region. The patterns of hydrogen peroxide accumulation under the various conditions suggest that peroxides pre-form at the interfacial region, but the self-scavenging reaction by hydrogen peroxide simultaneously takes place in the same region. The simultaneously measured peroxide concentration, in the absence and presence of DMPO, and that of the DMPO-OH adduct indicated the peroxide production and DMPO-OH adduct formation reaction occur at the shell region. The sonolytic destruction efficiency of ultrasound coupled with Fe(II) has been also investigated. The coupled Fe(II)/ultrasound process was found to enhance the OH* production rate by 70% compared to the ultrasound process alone due to the reaction of Fe(II) with sonochemically produced hydrogen peroxide (Fenton's reaction). This accelerated reaction was also found to occur at the shell region rather than in the bulk solution. The enhancement effect of Fe(II)/ultrasound was also examined using pCBA as a probe. 2.8-fold and 3.6-fold increases of the pCBA degradation rate were observed at Fe(II) concentrations of 10 and 20 microM, respectively.  相似文献   

17.
The sonochemical decolorization and decomposition of azo dyes, such as C. I. Reactive Red 22 and methyl orange, were performed from the viewpoints of wastewater treatment and to determine the reaction kinetics. A low concentration of the azo dye solution was irradiated with a 200 kHz and 1.25 W/cm2 ultrasound in a homogeneous aqueous solution. The azo dye solutions were readily decolorized by the irradiation. The sonochemical decolorization was also depressed by the addition of the t-butyl alcohol radical scavenger. These results indicated that azo dye molecules were mainly decomposed by OH radicals formed from the water sonolysis. In this paper, we propose a new kinetics model taking into account the heterogeneous reaction kinetics similar to a Langmuir-Hinshelwood mechanism or an Eley-Rideal mechanism. The proposed kinetics model is based on the local reaction site at the interface region of the cavitation bubbles, where azo dye molecules are quickly decomposed because an extremely high concentration of OH radicals exists in this region. To confirm the proposed kinetics model, the effects of the initial concentration of azo dyes, irradiated atmosphere and pH on the decomposition rates were investigated. The obtained results were in good agreement with the proposed kinetics model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号