首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Simultaneous all-optical multi-channel RZ and CSRZ to NRZ format conversion   总被引:1,自引:0,他引:1  
We propose and demonstrate multi-channel all-optical return-to-zero (RZ) and carrier-suppressed RZ (CSRZ) to non-return-to-zero (NRZ) format conversions using a same fiber delay-interferometer (DI). The conversions are based on simultaneous constructive interference induced by the periodical comb-like filtering characteristic of the DI. By using a DI with free spectral range of 40 GHz, 8 channel RZ and CSRZ signals at 20 Gb/s can be converted to corresponding NRZ signals at the same time. Furthermore, a duplicate output can be obtained for multi-channel CSRZ input. Bit error ratio measurements show 4 and 3.5 dB penalties for the proposed multi-channel RZ and CSRZ to NRZ conversions respectively. Further transmission for the converted NRZ signals verifies the good performance of the proposed all-passive multi-channel format converter. The potential of multi-channel RZ signals with mixed duty-cycle to NRZ conversions is also investigated.  相似文献   

2.
Rajneesh Kaler 《Optik》2011,122(7):620-625
In this paper, we have demonstrated the quality-of-service offered by the metropolitan area network which is based on optical cross connect (OXC) and arrayed waveguide grating (AWG) demultiplexer operating at 10 Gb/s with 0.1 nm channel spacing for NRZ signal transmission. The data is successfully transmitted to a distance of 40 km with a reasonably good BER of 2.388 × 10−35. The OXC and AWG demultiplexers in the proposed architecture allow incremental expansion in terms of the number of wavelength channels to be transmitted. Dispersion and crosstalk are the main signal-degrading factors arising from the operation of the OXC and the effectiveness of each factor is individually investigated.  相似文献   

3.
We demonstrate multi-channel non-return-to-zero (NRZ) to return-to-zero (RZ) conversions with tunable output pulse-width and single-to-dual function, using a phase modulator and an array waveguide grating (AWG), which acts both detuned multi-channel filter and demultiplexer. Four-channel NRZ signals after transmission can be converted to eight-channel RZ signals with timing jitter and extinction ratio improvement. Further transmission and bit error ratio (BER) measurements for the converted RZ signal show a good performance compared with conventional one.  相似文献   

4.
A 32 × 32 arrayed waveguide grating (AWG) multiplexer operating around the 1550 nm wavelength has been designed and fabricated using highly fluorinated polyethers. The propagation loss of the slab waveguide is about 0.3 dB/cm at 1550 nm wavelength. The channel spacing of the AWG multiplexer is 0.8 nm (100 GHz). The insertion loss of the multiplexer is 10.3-15.3 dB and the crosstalk is less than −20 dB.  相似文献   

5.
In this article, the spectrum sliced dense wavelength division multiplexed passive optical network (SS-DWDM–PON) has been investigated as a power efficient and cost effective solution for optical access networks. In this work an AWG demultiplexer is used to operate as slicing system. The high speed SS-DWDM system has been realized and investigated for 32 channels with data rate up to 3 Gb/s using broadband ASE source (LED). The 3 Gb/s signals both non-return-to-zero (NRZ) and return-to-zero (RZ) were demonstrated in 40 km optical fiber link with BER < 10−12. The results obtained here demonstrate that SS-DWDM is well suited for Fiber-to-the-Home (FTTH) network.  相似文献   

6.
A compact eight-channel flat spectral response arrayed waveguide grating (AWG) multiplexer based on silicon-on-insulator (SOI) materials has been fabricated on the planar lightwave circuit (PLC). The 1-dB bandwidth of 48 GHz and 3-dB bandwidth of 69 GHz are obtained for the 100 GHz channel spacing. Not only non-adjacent crosstalk but also adjacent crosstalk are less than −25 dB. The on-chip propagation loss range is from 3.5 to 3.9 dB, and the total device size is 1.5 × 1.0 cm2.  相似文献   

7.
We have proposed and discussed a design of arrayed waveguide grating (AWG) for the application of wavelength interrogation. The spectral responses of a silica-based 16 channel AWG with channel spacing 1.6 nm have been simulated when different receiver waveguide spacing are used. It was found that the 3-dB bandwidth is reduced about 50% as the receiver waveguide spacing increasing from 20 μm to 30 μm. The effect of bandwidth of the spectral response on wavelength resolution of AWG based interrogator has been estimated and discussed.  相似文献   

8.
Rajneesh Kaler 《Optik》2011,122(7):610-615
In this paper, we have analyzed the performance and feasibility for the metropolitan area network based on arrayed waveguide grating (AWG) multiplexers and arrayed waveguide grating (AWG) demultiplexers operating at the bitrate of 10 Gb/s. In the network, the data is successfully transmitted to a distance of 50 km with a very low BER of 1 × 10−40 thus improving the performance over AWG star based networks. Here, we have observed that arrayed waveguide gratings based multiplexers and demultiplexers for WDM applications prove to be capable of precise multiplexing and demultiplexing of a large number of channels with relatively low losses. This paper also presents the comparative investigation and suitability of various data formats like NRZ Rectangular, NRZ Raised cosine, RZ Rectangular, RZ Raised cosine and RZ super Gaussian for optical transmission link. It has been shown that RZ Raised cosine yields the highest value of Q, good eye opening and lowest BER.  相似文献   

9.
All-optical clock extraction from a 10-Gbit/s NRZ-DPSK input signal is demonstrated using modal interference in a two-mode fiber (TMF) and a mode-locked fiber ring laser. The TMF has a Mach-Zehnder configuration with two arms along the core and cladding regions. Using the difference in propagation delay between two arms, the non-return-to-zero differential phase shift keying (NRZ-DPSK) signal is converted to the return-to-zero on-off keying (RZ-OOK) signal. To obtain repetitive pulses as a clock signal from the RZ-OOK signal, a ring laser with a semiconductor optical amplifier (SOA) is used. Subsequently, the carrier-to-noise ratio (CNR) of the RZ-OOK and clock signals are enhanced up to 30 dB and 40 dB, respectively, compared to that of the original NRZ-DPSK signal. Also, the clock signal centered at 10 GHz has a low timing jitter of <1.6 ps. It is expected that this method can be applied to high speed fiber-optic systems of >10 Gbit/s due to its small time delay between the core and cladding regions.  相似文献   

10.
A novel scheme to implement clock recovery from degraded signals is proposed and demonstrated based on an optoelectronic oscillator and a dual-wavelength mode-locked fiber ring laser with distributed dispersion cavity. The scheme can obtain wavelength-tunable optical clocks at two wavelengths, which is highly desirable for composite optical logic gates, cascaded optical signal processing modules or optical signal processing modules that need synchronized pulses at multiple wavelengths. In addition, the scheme can operate in both RZ and NRZ systems. The feasibility of the method is demonstrated by an experiment, in which dual-wavelength 10-GHz optical clock with a timing jitter less than 170 fs is obtained from 10-Gb/s degraded RZ and NRZ signals. The optical clocks can be tuned from 1530 to 1565 nm.  相似文献   

11.
An optical mono-stable multivibrator laser diode (MM-LD) is realized by using a multi-electrode distributed feedback laser diode. All-optical pulse-width conversion of ultra-short pulses to non-return-to-zero (NRZ) is achieved using an MM-LD. The MM-LD is adopted for a wide range of bit-rates between 2-10 Gbit/s by tuning the DC bias. Data format transformation from 10-Gbit/s return-to-zero optical signals to NRZ optical-signals is achieved with error free operation. Converted optical signals, which have a narrower spectral bandwidth and lower peak power than when input, are transmitted using a 1.3-μm zero dispersion fiber (1.3Aλ0-SMF).  相似文献   

12.
A non-return-to-zero (NRZ) to pseudo-return-to-zero (PRZ) converter consisting of a semiconductor optical amplifier (SOA) and an arrayed waveguide grating (AWG) is proposed, by which the enhancement of clock frequency component and clock-to-data suppression ratio of the NRZ data are evidently achieved. Alloptical clock recovery from NRZ data at 10 Gb/s is successfully demonstrated with the proposed NRZ-to-PRZ converter and a mode-locked SOA fiber laser. Furthermore, NRZ-to-RZ format conversion of 10 Gb/s is realized by using the recovered clock as the control light of terahertz optical asymmetric demultiplexer(TOAD), which further proves that the proposed clock recovery scheme is applicable.  相似文献   

13.
In order to meet the requirements of the multi-wavelength light source of large-capacity, high-speed, long-distance optical communication system, we researched the multi-wavelength light source based on super-continuum (SC), analyzed the main factors in the SC generation, such as dispersion, nonlinear effects. The SC simulation and optimization around the input pulse width, peak power, fiber length, non-linear coefficient parameters for analysis. The optimized results: SC input achieved 25 GHz repetition rate, amplified by high power EDFA, input average power did not exceed 33 dBm. The output of the SC 3 dB bandwidth was greater than 70 nm, after AWG, output 320 wavelengths, wavelength spacing is 0.2 nm (25 GHz), the signal-to-noise ratio was greater than 30 dB.  相似文献   

14.
In this paper, we propose and demonstrated a dual wavelength fiber laser (DWFL) based on the use of an erbium doped fiber (EDF) gain medium as well as an 1 × 24 Arrayed Waveguide Grating (AWG) together with two optical channel selectors (OCS) to provide channel spacing tunability. The output power of the two wavelengths is equalized by controlling the cavity loss in the DWFL using two Programmable Optical Attenuators (POAs). The widest spacing obtained from the DWFL is 18.13 nm while the narrowest spacing is 0.8 nm. The DWFL has good stability with only minor power fluctuations of less than 1.5 dB and a Side Mode Suppression Ratio (SMSR) of approximately 69.1 dB with peak fluctuations of less than 2.3 dB.  相似文献   

15.
This paper presents experimental investigations of the all-optical synchronization of a distributed Bragg reflector (DBR) laser self-pulsating at 40 GHz on various injected bit-rate signals. Even though there is no modulation applied to this laser, it exhibits a modulation of its output emission, measured at 39.7 GHz with a linewidth of 30 MHz. Such performance is exploited in all-optical clock recovery for a return-to-zero data stream at 40 Gbit/s. The SP-DBR laser wavelength and the injected signal wavelength are 10 nm apart. All-optical synchronization is demonstrated at 40 Gbit/s with a linewidth of less than 20 MHz for injected signals at 10 and 20 Gbit/s, respectively. Thus the SP-DBR laser proves to be very versatile and can be synchronized on various bit-rate data signals.  相似文献   

16.
A novel scheme for all-optical frequency multiplication/recovery based on a semiconductor optical amplifier ring cavity is proposed and investigated numerically. The results show, for a 2.5 GHz driving pulse train, it can be generated 5-25 GHz repetition rate pulse trains with low clock amplitude jitter, polarization independence and high peak power. Furthermore, the extraction of the clock signal from a pseudorandom bit sequence signal can be realized based on the proposed scheme.  相似文献   

17.
A 1.55 μm InGaAsP-InP partly gain-coupled two-section DFB self-pulsation laser (SPL) with a varied ridge width has been fabricated. The laser produces self-pulsations with a frequency tuning range of more than 135 GHz. All-optical clock recovery from 40 Gb/s degraded data streams has been demonstrated. Successful lockings of the device at frequencies of 30 GHz, 40 GHz, 50 GHz, and 60 GHz to a 10 GHz sidemode injection are also conducted, which demonstrates the capability of the device for all-optical clock recovery at different frequencies. This flexibility of the device is highly desired for practical uses.  相似文献   

18.
The switchable multiwavelength fiber laser (SMWLSs) using AWG and broadband FBG with tuning range 11.7 nm and 0.75 nm spacing are demonstrated. The switchable lasers for every channel shows flatness output power with variation 3.7 dBm and peak power around −6.1 dBm. The side mode suppression ratio (SMSR) of the laser is significantly improved for every channel when using broadband FBG. The improvement is about 27.7 dBm. The laser for every channel also shows the good stability within the 2 h operation.  相似文献   

19.
We present experimental and theoretical results on all-optical 10 and 20 Gb/s RZ to NRZ modulation format and wavelength converter based on a nonlinear optical loop mirror (NOLM). A vector model of converter was developed and the shape of converted pulses was found analytically for particular choice of polarization states. In the experiment, non-zero dispersion shifted fiber with a length 1200 m was used as a nonlinear medium. Pulses from a 10 GHz mode-locked semiconductor laser diode were modulated to form pseudorandom RZ signal and eventually time division multiplexed to 20 Gb/s. RZ pulses were subsequently converted to NRZ signal. The performance of the converter was evaluated experimentally using the data communication analyzer and bit error ratio tester.  相似文献   

20.
Here we proposed a novel architecture of wavelength division multiplexed-passive optical network (WDM-PON) in which the downlink unicast data, broadcast data and uplink unicast data transmission is possible with the symmetric data rate of 10 Gbps. At remote node (RN) cyclic wavelength routing property of array waveguide grating (AWG) and power splitting capacity of power splitter is used in the architecture so that broadcast channel can be overlaid on downlink unicast channels. At ONU carriers sent from central office (CO) is reused for upstream data transmission with the help of integration of a reflective semiconductor amplifier (RSOA) and an electro-absorption modulator (EAM) so there is no need of extra laser sources at ONUs which makes them colorless. EAM can be operated at very high speed; a modulation bandwidth of tens of GHz can be achieved. Broadcast channel causes a limited interference with downlink and uplink unicast channels so it does not affect the system performance. Since each channel has different wavelength so NRZ data is used which eliminates expensive DPSK receivers and detection becomes very easy. Simulation is performed with all channels having data rate of 10 Gbps having acceptable performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号