首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
A novel photonic scheme of microwave signal frequency measurement with adjustable measurement range and resolution is proposed and experimentally demonstrated. The proposed scheme is based on simultaneous optical phase modulation and intensity modulation with interferometric detection. A low-pass frequency response is achieved by a Mach–Zehnder interferometer (MZI) while a bandpass frequency response is produced by a polarizer placed on the back instead of in front of the MZI. The microwave frequency can be estimated by the measured amplitude comparison function (ACF) obtained from the ratio of the two frequency responses. This scheme is simple, cost-effective as it requires no extra laser sources or modulators in the basic analog modulation link. The measurement errors as shown in experimental results can be kept in 0.1 GHz over a frequency range of 0.1–8.5 GHz.  相似文献   

2.
A tunable and switchable single-longitudinal-mode (SLM) dual-wavelength fiber laser incorporating a reconfigurable dual-pass Mach-Zehnder interferometer (MZI) filter was proposed and demonstrated, which can be applied in microwave generation. By incorporating a high extinction ratio (ER) dual-pass MZI into an erbium-doped fiber ring cavity, SLM dual-wavelength lasing can be achieved even using a MZI with relatively little free spectrum range (FSR), and by beating the two wavelengths at a photodetector, a 9.76 GHz microwave signal with a 3-dB bandwidth of less than 10 kHz is obtained. Moreover, by direct linking the two outputs of the MZI, the high ER dual-pass MZI is easily reconfigured as a half FSR dual-pass MZI. Using this structure, switchable SLM dual-wavelength lasing can be conveniently realized.  相似文献   

3.
A photonic approach to realizing instantaneous measurement of microwave frequency based on optical monitoring using a fiber Bragg grating (FBG) is proposed and demonstrated. In the approach, a frequency-unknown microwave signal is modulated on an optical carrier in a Mach-Zehnder modulator biased at the minimum transmission point. After detecting the transmission and reflection optical powers at the output of the FBG, the microwave frequency can be determined according to the value of transmission-to-reflection power ratio, due to the fixed relationship between the microwave frequency and the power ratio. A proof-of-concept experiment has been performed, which demonstrates that a measurement resolution of ±0.08 GHz over a 10 GHz measurement bandwidth is achieved. The measurement performance in terms of resolution is better than previously reported results.  相似文献   

4.
The rod-shaped Co-Ni-P shells were prepared by metalling Bacillus. The microstructures and composition of the shells were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive analysis (EDS). The electromagnetic parameters were measured by the coaxial line method in the frequency of 2-18 GHz. It was found that the Bacillus were successfully coated with Co-Ni-P, and the inner structure of the shells are hollow in structure. The shells exhibit excellent microwave absorption properties in 5-17 GHz frequency. The microwave reflection loss is above −10 dB in 5.38-16.6 GHz frequency. The maximum microwave reflection loss reaches −35.83 dB at 9.12 GHz for samples thickness 2.4 mm, and the widest bandwidth for microwave reflection loss above −10 dB is about ∼5.32 GHz for samples thickness 2.0 mm. These results confirm the feasibility of applying Bacillus as biotemplates for fabrication of the metallic shells as lightweight microwave absorption materials are very promising for applications.  相似文献   

5.
We demonstrate a multi-wavelength semiconductor optical amplifier (SOA) fiber ring laser with a dual-pass Mach-Zehnder interferometer (MZI) filter. Two SOAs with different gain spectra provide sufficient gain and a wider gain spectrum to facilitate multi-wavelength lasing. The dual-pass MZI, configured by adding an optical isolator to the two outputs of the conventional MZI, serves as comb filter for multi-wavelength operation, and its extinction ratio can be enhanced to twofold as that of the conventional MZI in the same parameters. To investigate the influences of a dual-pass MZI filter and a conventional MZI filter on multi-wavelength operation, two different cavity configurations are presented and compared, including a single-SOA ring cavity and a double-SOA ring cavity. Stable simultaneous operation at 82 wavelengths, with a wavelength spacing of 40 GHz and a power deviation of 5 dB, and with a minimum optical signal-to-noise ratio (OSNR) of 28 dB, is observed from the double-SOA ring cavity using a dual-pass MZI filter.  相似文献   

6.
To solve more and more serious electromagnetic interference problem, one thin microwave absorbing sheet employing carbonyl-iron powder (CIP) and chlorinated polyethylene (CPE) was prepared. The pattern, static magnetic properties and phase of CIP were characterized by scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD), respectively. The electromagnetic parameters of CIP were measured in the frequency range of 2-18 GHz, and the electromagnetic loss mechanisms of the powder were discussed. The microwave absorption properties of composite sheets with different thicknesses and CIP ratios in matrix were investigated by measuring reflection loss (RL) in 2-18 GHz frequency range using the arch method. The results showed that appropriate CIP content and thickness could greatly improve microwave absorption properties in lower frequency range. For the sample with the weight ratio (CIP:CPE) of 16:1 and 1.5 mm thickness, the bandwidth (RL below −10 dB) achieved 1.1 GHz (2-3.1 GHz), and the minimum reflection loss value was obtained −13.2 dB at 2.2 GHz. This suggested that CIP/CPE composites could be applied as thin microwave absorbers in S-band (2-4 GHz).  相似文献   

7.
A new technique to instantaneously measure microwave frequency and amplitude is presented and experimentally demonstrated. The architecture described is based on a single sideband modulation with suppressed carrier (SSB-SC) and the measurement of the Stokes parameters at the output of a birefringent medium. The results show errors below 50 MHz in the 59% of measurements carried out in a range from 1 to 11 GHz and an average power error of 0.34 dB. The technique shows the potential to increase the resolution and the range by increasing the differential time delay of the birefringent medium.  相似文献   

8.
A high-resolution spectroscopy technique is proposed with an optical phase modulator combined with an interleaved optical frequency comb. The optical phase modulator and a frequency-locked laser light guarantee a spectral resolution less than 1 MHz on an absolute frequency axis. A wide measurement frequency range was realized using a 25 GHz optical frequency comb lying over a 4 THz frequency region. An extraction of single tooth intensity from the comb was realized by a heterodyne technique with a frequency-tunable laser used as a local oscillator. Also, the 25 GHz optical frequency comb was interleaved to generate four 100-GHz combs for removing the crosstalk from the 25 GHz neighboring sidebands in the teeth. This proposed spectroscopy technique was experimentally demonstrated with a resonator of less than 1 MHz linewidth and a H13C14N gas cell. Thus, a measurement frequency range higher than 4 THz (1530 nm-1560 nm) was confirmed with an effective spectral resolution 100 kHz order. In addition, the characteristics of the proposed system were compared with those of the previous system with a single-sideband (SSB) optical modulator.  相似文献   

9.
We present an optical scheme for photonic frequency up-conversion at the millimeter-wave bands based on Semiconductor Optical Amplifier. The proposed scheme modulates the bias current with the Intermediate Frequency in order to achieve frequency mixing of an incoming optical signal modulated with the Local Oscillator. Theory indicates that the proposed scheme supports data bandwidths in the tens of GHz for LO values above 10 GHz. This scheme allows for photonic integration of the considered optical devices. A laboratory demonstration of the scheme for up-conversion to the 40 GHz band, using narrow-band IF signals, showed relatively low thresholds for the optical input power and bias current level to achieve error free operation: − 14.5 dBm 100 mA for a 64-QAM signal. Spurious-Free Dynamic Range showed an acceptable performance, with a linearity about 52.5 dB·Hz2/3 for an optical input power of − 6 dBm.  相似文献   

10.
Microwave absorbing materials filled with BaTiO3 and carbonyl iron (CI) particles with various weight fractions (BaTiO3/CI particles=100/0 to 0/100) are investigated. The dielectric and magnetic properties of the absorbers can be tuned by changing the weight ratio of BaTiO3/CI particles in the frequency range of 2-18 GHz. Numerical simulations are also performed to design a single-layer and double-layer absorber. The minimum reflection loss of the composite filled with 20 wt% BaTiO3 and 60 wt% CI particles at 2.0 mm thickness can be reached to −42 dB at 4.1 GHz. With the weight ratio of CI particles in the composite increased, the microwave absorption peak shifted to the lower frequency region. By using a double-layer absorber structure, the microwave absorption performance of the absorber is enhanced. The result shows that the total thickness of the absorber can be reduced below 1.4 mm by using a matching layer filled with 50 wt% BaTiO3, and an absorption layer filled with 60 wt% BaTiO3 and 20 wt% CI particles, whereas the reflection loss below −10 dB can be obtained in the frequency range of 10.8-14.8 GHz and the minimum reflection loss of −59 dB can be obtained at 12.5 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号