首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
杨志红  杨永宏  汪军 《中国物理 B》2012,21(5):57402-057402
We theoretically investigate the spin transport properties of the Cooper pairs in a conventional Josephson junction with Rashba spin-orbit coupling considered in one of the superconducting leads.It is found that an angle-resolved spin supercurrent flows through the junction and a nonzero interfacial spin Hall current driven by the superconducting phase difference also appears at the interface.The physical origin of this is that the Rashba spin-orbit coupling can induce a triplet order parameter in the s-wave superconductor.The interfacial spin Hall current dependences on the system parameters are also discussed.  相似文献   

2.
李云 《中国物理 B》2011,20(5):57303-057303
We present theoretical calculations of spin transport in spin filtering magnetic tunnelling junctions based on the Landauer-Buttiker formalism and taking into account the spin-orbit coupling(SOC).It is shown that spin-flip scattering induced by SOC is stronger in parallel alignment of magnetization of the ferromegnet barrier(FB) and the ferromagnetic electrode than that in antiparallel case.The increase of negative tunnelling magnetoresistance with bias is in agreement with recent experimental observation.  相似文献   

3.
朱国宝 《中国物理 B》2012,(11):429-433
The spin Hall and spin Nernst effects in graphene are studied based on Green’s function formalism.We calculate intrinsic contributions to spin Hall and spin Nernst conductivities in the Kane-Mele model with various structures.When both intrinsic and Rashba spin-orbit interactions are present,their interplay leads to some characteristics of the dependence of spin Hall and spin Nernst conductivities on the Fermi level.When the Rashba spin-orbit interaction is smaller than intrinsic spin-orbit coupling,a weak kink in the conductance appears.The kink disappears and a divergence appears when the Rashba spin-orbit interaction enhances.When the Rashba spin-orbit interaction approaches and is stronger than intrinsic spin-orbit coupling,the divergence becomes more obvious.  相似文献   

4.
《中国物理 B》2014,(1):347-356
In this study, we investigate theoretically the effect of spin-orbit coupling on the energy level spectrum and spin texturing of a quantum wire with a parabolic confining potential subjected to the perpendicular magnetic field. Highly accurate numerical calculations have been carried out using a finite element method. Our results reveal that the interplay between the spin-orbit interaction and the effective magnetic field significantly modifies the band structure, producing additional subband extrema and energy gaps. Competing effects between external field and spin-orbit interactions introduce comp|ex features in spin texturing owing to the couplings in energy subbands. We obtain that spatia~ modulation of the spin density along the wire width can be considerably modified by the spin-orbit coupling strength, magnetic field and charge carrier concentration.  相似文献   

5.
We report the observation of in-plane anisotropic magnetoresistance and planar Hall effect in non-magnetic HfTe5 thin layers.The observed anisotropic magnetoresistance as well as its sign is strongly dependent on the critical resistivity anomaly temperature Tp.Below Tp,the anisotropic magnetoresistance is negative with large negative magnetoresistance.When the in-plane magnetic field is perpendicular to the current,the negative longitudinal magnetoresistance reaches its maximum.The negative longitudinal magnetoresistance effect in HfTe5 thin layers is dramatically different from that induced by the chiral anomaly as observed in Weyl and Dirac semimetals.One potential underlying origin may be attributed to the reduced spin scattering,which arises from the in-plane magnetic field driven coupling between the top and bottom surface states.Our findings provide valuable insights for the anisotropic magnetoresistance effect in topological electronic systems and the device potential of HfTe5 in spintronics and quantum sensing.  相似文献   

6.
We study the spin-field and the spin-spin entanglement in the ground state of a spin-orbit coupled Bose–Einstein condensate. It is found that the spin-field and the spin-spin entanglement can be induced by the spin-orbit coupling. By mapping the system to the Dicke-like model,the system exhibits a quantum phase transition from a normal(spin balanced) phase to superradiant(spin polarized) phase. The Dicke-like phase transition can be captured by the spin-field and the spin-spin entanglement arising from the spin-orbit coupling. The spin-field and the spin-spin entanglement increase as the Raman coupling increases in the superradiant phase,while they decrease with the Raman coupling increasing in the normal phase. We also consider the effect of a finite detuning on these entanglement show that the presence of the detuning suppresses the spin-field and the spin-spin entanglement.  相似文献   

7.
Spin-dependent transport in ferromagnet/organic-ferromagnet/metal junctions is investigated theoretically. The results reveal a large tunneling magnetoresistance up to 3230% by controlling the relative magnetization orientation between the ferromagnet and the central organic ferromagnet. The mechanism is explained by distinct efficient spin-resolved tunneling states in the ferromagnet between the parallel and antiparallel spin configurations. The key role of the organic ferromagnet in generating the large magnetoresistance is explored, where the spin selection effect is found to enlarge the difference of the tunneling states between the parallel and antiparallel configurations by comparing with the conventional organic spin valves. The effects of intrinsic interactions in the organic ferromagnet including electron–lattice interaction and spin coupling with radicals on the magnetoresistance are discussed. This work demonstrates a promising potential of organic ferromagnets in the design of high-performance organic spin valves.  相似文献   

8.
We review colossal magnetoresistance in single phase manganites, as related to the field sensitive spin-charge interactions and phase separation; the rectifying property and negative/positive magnetoresistance in manganite/Nb:SrTio3 p-n junctions in relation to the special interface electronic structure; magnetoelectric coupling in manganite/ferroelectric structures that takes advantage of strain, carrier density, and magnetic field sensitivity; tunneling magnetoresistance in tunnel junctions with dielectric, ferroelectric, and organic semiconductor spacers using the fully spin polarized nature of manganites; and the effect of particle size on magnetic properties in manganite nanoparticles.  相似文献   

9.
We investigate the electronic structures and optical dielectric functions of the high temperature phase of Sr2 CrOs06 with cubic structure by using Tran and Blaha's modified Becke and Johnson exchange potential. In the absence of spin-orbit coupling, the total spin moment is OμB. When spin-orbit coupling is included, the small total spin moment and an unquenched Os orbital moment appear, and the spin non-conservation gap becomes smaller. The calculated net magnetic moment is smaller than the popular generalized gradient approximation result, and the spin non-conservation gap is larger. The optical dielectric functions with spin-orbit coupling are not very different from the ones without spin-orbit coupling.  相似文献   

10.
Ga+ion irradiation is performed on the surfaces of IrMn-based spin valves and the effects of ion irradiation on the magnetisation reversal process and magnetoresistance(MR) are investigated.The results show that the exchange bias field and magnetoresistance ratio of the spin valve decrease with the increase of ion dose.The width of the forward step between the free layer and the pinned layer becomes gradually smaller with the increase of ion dose whilst the recoil step tends to be narrower with ion dose increasing up to 6×10 13 ions/cm 2 and the step disappears afterwards.Two peaks in the R-H curve are found to be asymmetric.  相似文献   

11.
Because of spin-orbit interaction, an electrical current is accompanied by a spin current resulting in spin accumulation near the sample edges. Due again to spin-orbit interaction this causes a small decrease of the sample resistance. An applied magnetic field will destroy the edge spin polarization leading to a positive magnetoresistance. This effect provides means to study spin accumulation by electrical measurements. The origin and the general properties of the phenomenological equations describing coupling between charge and spin currents are also discussed.  相似文献   

12.
Hu H  Jiang L  Liu XJ  Pu H 《Physical review letters》2011,107(19):195304
Motivated by the prospect of realizing a Fermi gas with a synthetic non-Abelian gauge field, we investigate theoretically a strongly interacting Fermi gas in the presence of a Rashba spin-orbit coupling. As the twofold spin degeneracy is lifted by spin-orbit interaction, bound pairs with mixed singlet and triplet components emerge, leading to an anisotropic superfluid. We calculate the relevant physical quantities, such as the momentum distribution, the single-particle spectral function, and the spin structure factor, that characterize the system.  相似文献   

13.
We study the effect of Rashba spin-orbit coupling on the Hofstadter spectrum of a two-dimensional tight-binding electron system in a perpendicular magnetic field. We obtain the generalized coupled Harper spin-dependent equations which include the Rashba spin-orbit interaction and solve for the energy spectrum and spin polarization. We investigate the effect of spin-orbit coupling on the fractal energy spectrum and the spin polarization for some characteristic states as a function of the magnetic flux α and the spin-orbit coupling parameter. We characterize the complexity of the fractal geometry of the spin-dependent Hofstadter butterfly with the correlation dimension and show that it grows quadratically with the amplitude of the spin-orbit coupling. We study some ground state properties and the spin polarization shows a fractal-like behavior as a function of α, which is demonstrated with the exponent close to unity of the decaying power spectrum of the spin polarization. Some degree of spin localization or distribution around +1 or -1, for small spin-orbit coupling, is found with the determination of the entropy function as a function of the spin-orbit coupling. The excited states show a more extended (uniform) distribution of spin states.  相似文献   

14.
张磊  李辉武  胡梁宾 《物理学报》2012,61(17):177203-177203
本文利用半经典的自旋密度矩阵方法对二维自旋轨道耦合电子气中持续自旋螺旋态的稳定性进行了一些研究, 重点研究了自旋螺旋态的寿命与其波矢、载流子迁移率、温度、自旋轨道耦合强度、外电场强度等因素之间的关系, 并将部分理论计算结果与最近的一些相关实验结果进行了比较,发现两者之间大致是符合的.  相似文献   

15.
陈慧余  罗有泉  朱弘  温琳清 《物理学报》1994,43(7):1185-1191
采用电子束蒸发法制备的81NiFe/Cr多层膜具有单向各向异性,磁滞回线非轴对称,相当存在1Oe数量级的交换偏场。磁电阻回线的上升和下降两枝差别明显,其中以横向磁电阻回线最为显著。有的试样上升枝与下降枝相应的最大横向磁电阻率之差已高达0.78%,其最大各向异性磁电阻率(Rmax-Rmin)/R为4.72%,甚高于Miyazaki等[1]的优质82NiFe合金单层膜的报道值3%。可以认为这类多层膜的磁电阻效应除主要来源于自旋-轨道耦合机制外, 关键词:  相似文献   

16.
The dependence of organic magnetoresistance (OMAR) on the orientation of the magnetic field has been investigated. In contrast with previous claims, a finite and systematic change in magnitude is observed when the orientation of the field is changed with respect to the sample. It is demonstrated that, to explain these effects, spin-spin interactions have to be included in the models previously suggested for OMAR. Dipole coupling and exchange coupling are introduced in combination with either an anisotropy of the orientation of the spin pairs or an anisotropy in the hyperfine fields.  相似文献   

17.
We study the effect of the Dresselhaus spin-orbit interaction on the magnetoresistance (MR) of a quasi-one-dimensional ferromagnetic semiconductor containing a sharp domain wall. The MR is calculated in the ballistic regime, within the Landauer-Büttiker formalism. The results show that the Dresselhaus spin-orbit coupling which induces an effective magnetic field along the wire, reduces the domain wall MR.  相似文献   

18.
An expansion of the nearly free-electron model constructed by Frantzeskakis, Pons, and Grioni [1] describing quantum states at the Bi/Si(111) interface with the giant spin-orbit coupling is developed and applied for the band structure and spin polarization calculation, as well as for the linear response analysis of the charge current and induced spin caused by a dc field and by electromagnetic radiation. It is found that the large spin-orbit coupling in this system may allow resolving the spin-dependent properties even at room temperature and at a realistic collision rate. The geometry of the atomic lattice combined with spin-orbit coupling leads to an anisotropic response for both the current and spin components related to the orientation of the external field. The in-plane dc electric field produces only the in-plane components of spin in the sample, while both the in-plane and out-of-plane spin components can be excited by normally propagating electromagnetic wave with different polarizations.  相似文献   

19.
In lateral quantum dots, the combined effect of both Dresselhaus and Bychkov-Rashba spin-orbit coupling is equivalent to an effective magnetic field +/- B(SO) which has the opposite sign for s(z)= +/- 1/2 spin electrons. When the external magnetic field is perpendicular to the planar structure, the field B(SO) generates an additional splitting for electron states as compared to the spin splitting in the in-plane field orientation. The anisotropy of spin splitting has been measured and then analyzed in terms of spin-orbit coupling in several AlGaAs/GaAs quantum dots by means of resonant tunneling spectroscopy. From the measured values and sign of the anisotropy we are able to determine the dominating spin-orbit coupling mechanism.  相似文献   

20.
The quantum states of a two-dimensional electron gas with spin-orbit coupling located in the periodic potential of a lateral-surface superlattice are studied. The spin-split energy bands and the distribution of spin projections in the Brillouin zone are constructed. Bloch oscillations accompanied by spin precession in superlattices with spin-orbit coupling located in a constant electric field are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号