首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Electronic and optical properties of single-walled zinc oxide (ZnO) nanotubes are investigated from the firstprinciples calculations. Electronic structure calculations show that ZnO nanotubes are all direct band gap semiconducting nanotubes and the band gaps are relatively insensitive to the diameter and chirality of tubes. The origin of the common electronic band gaps of ZnO nanotubes is explained in terms of band-folding from the two-dimensional band structure of graphite-like sheet. Moreover, the optical properties such as dielectric function and energy loss function spectra of different ZnO nanotubes are very similar, relatively independent of diameter and chirality of tubes. The calculated dielectric function and loss function spectra show a moderate optical anisotropy with respect to light polarization.  相似文献   

2.
The geometries of Mg n Ni 2(n = 1-6) clusters are studied by using the hybrid density functional theory(B3LYP) with LANL2DZ basis sets.For the ground-state structures of Mg n Ni 2 clusters,the stabilities and the electronic properties are investigated.The results show that the groundstate structures and symmetries of Mg clusters change greatly due to the Ni atoms.The average binding energies have a growing tendency while the energy gaps have a declining tendency.In addition,the ionization energies exhibit an odd-even oscillation feature.We also conclude that n = 3,5 are the magic numbers of the Mg n Ni 2 clusters.The Mg 3 Ni 2 and Mg 5 Ni 2 clusters are more stable than neighbouring clusters,and the Mg 4 Ni 2 cluster exhibits a higher chemical activity.  相似文献   

3.
杨杰  董全力  江兆潭  张杰 《中国物理 B》2010,19(12):127104-127104
This paper studies in detail the electronic properties of the semimetallic single-walled carbon nanotubes by applying the symmetry-adapted tight-binding model.It is found that the hybridization of π-σ states caused by the curvature produces an energy gap at the vicinity of the Fermi level.Such effects are obvious for the small zigzag and chiral single-walled carbon nanotubes.The energy gaps decrease as the diameters and the chiral angles of the tubes increase,while the top of the valence band and the bottom of the conduction band of armchair tubes cross at the Fermi level.The numeral results agree well with the experimental results.  相似文献   

4.
陈杭  雷雪玲  刘立仁  刘志锋  祝恒江 《中国物理 B》2010,19(12):123601-123601
The lowest-energy structures and the electronic properties of Mo2nNn(n=1-5) clusters have been studied by using the density functional theory(DFT) simulating package DMol 3 in the generalized gradient approximation(GGA).The resulting equilibrium geometries show that the lowest-energy structures are dominated by central cores which correspond to the ground states of Mo n(n = 2,4,6,8,10) clusters and nitrogen atoms which surround these cores.The average binding energy,the adiabatic electron affinity(AEA),the vertical electron affinity(VEA),the adiabatic ionization potential(AIP) and the vertical ionization potential(VIP) of Mo2nNn(n=1-5) clusters have been estimated.The HOMO-LUMO gaps reveal that the clusters have strong chemical activities.An analysis of Mulliken charge distribution shows that charge-transfer moves from Mo atoms to N atoms and increases with cluster size.  相似文献   

5.
We investigate the interaction of single-walled carbon nanotubes (SWCNTs) and methane molecule from the first principles. Adsorption energies are calculated, and methane affinities for the typical semiconducting and metallic nanotubes are compared. We also discuss role of the structural defects and nanotube curvature on the adsorption capability of the SWCNTs. We could observe larger adsorption energies for the metallic CNTs in comparison with the semiconducting CNTs. The obtained results for the zig zag nanotubes with various diameters reveal that the adsorption energy is higher for nanotubes with larger diameters. For defected tubes the adsorption energies are calculated for various configurations such as methane molecule approaching to the defect sites pentagon, hexagon, and heptagon in the tube surface. The results show that the introduce defects have an important contribution to the adsorption mechanism of the methane on SWNTs.  相似文献   

6.
This paper investigates the lowest-energy structures,stabilities and electronic properties of (BAs) n clusters (n=1-14) by means of the density-functional theory.The results show that the lowest-energy structures undergo a structural change from two-dimensional to three-dimensional when n=4.With the increase of the cluster size (n 6),the (BAs) n clusters tend to adopt cage-like structures,which can be considered as being built from B 2 As 2 and six-membered rings with B-As bond alternative arrangement.The binding energy per atom,second-order energy differences,vertical electron affinity and vertical ionization potential are calculated and discussed.The caculated HOMO-LUMO gaps reveal that the clusters have typical semiconductor characteristics.The analysis of partial density of states suggests that there are strong covalence and molecular characteristics in the clusters.  相似文献   

7.
The ground-state configurations of the Nbn (n = 2-11) clusters are studied through the first-principles calculations. It is found that niobium clusters (n = 2-11) tend to form compact structures with low symmetry. The clusters with 4, 8 and 10 atoms are found to be magic and have relatively large highest occupied-lowest unoccupied molecular orbital (HOMO-LUMO) gaps. The Nbn clusters possess low magnetic moments, which exhibit an odd-even oscillational character. The analyses of calculated electronic density and population of the lowest-energy niobium clusters for n = 2, 3, 5, 7, 9, 11 show that the total magnetic moments of Nbn originate mainly from a few Nb atoms with longer spacings between them in most cases, while they are located on two Nb atoms for n = 2, 3, 5. The total magnetic moments come mainly from the 4d local moments but with the exception of the Nb5 cluster.  相似文献   

8.
Cubic boron nitride single crystals are synthesized with lithium nitride as a catalyst under high pressure and high temperature. The main phases in the near-surface region, which around the single crystal are determined as a mixture of hexagonal boron nitride (hBN), cubic boron nitride (cBN) and lithium boron nitride (Li3BN2). High resolution transmission electron microscopy examinations show that there exist lots of nanometer-sized cubic boron nitride nuclei in this region. The interface phase structures of cubic boron nitride crystal and its near-surface region are investigated by means of transmission electron microscopy. The growth mechanism of cubic boron nitride crystal is analyzed briefly. It is supposed that LisBN2 impels the direct conversion of hBN to cBN as a real catalyst, and cBN is homogeneously nucleated in the molten state under high pressure and high temperature.  相似文献   

9.
Theoretical investigations show that bismuth nanotubes are semiconductors for all diameters,For small diameter bismuth nanotubes,the band structures and bandgaps vary strongly with the strong hybridization effect.When the diameters are larger than 18A,the bandgaps of Bi(n,n) and (n,0) nanotubes approach 0.63eV,corresponding to the bandgap of bismuth sheet at the T point,Thus,bismuth nanotubes are expected to be a potential semiconductor nanomaterial in future nanoelectronics.  相似文献   

10.
卢章辉  曹觉先 《中国物理 B》2008,17(9):3336-3342
Based on the density-functional theory, this paper studies the geometric and magnetic properties of TinO (n=1-9) clusters. The resulting geometries show that the oxygen atom remains on the surface of clusters and does not change the geometry of Tin significantly. The binding energy, second-order energy differences with the size of clusters show that Ti7O cluster is endowed with special stability. The stability of TinO clusters is validated by the recent time-of-flight mass spectra. The total magnetic moments for TinO clusters with n=1-4, 8-9 are constant with 2 and drop to zero at n=5-7. The local magnetic moment and charge partition of each atom, and the density of states are discussed. The magnetic moment of the TinO is clearly dominated by the localized 3d electrons of Ti atoms while the oxygen atom contributes a very small amount of spin in TinO clusters.  相似文献   

11.
王艳丽  苏克和  王欣  刘艳 《物理学报》2011,60(9):98111-098111
用密度泛函B3LYP/3-21G(d)方法,并利用周期边界条件,研究了n=2—20不同管径的超长(n, n)型单壁碳纳米管的结构、能量、能带结构和能隙.结果表明,管径和能量(或生成焓)都随n有很好的变化规律,并可拟合成很好的解析函数.当n为2和3时,碳纳米管的能隙分别为1.836eV和0.228eV,呈半导体特征,且具有间接带隙;当n=4—20时,能隙介于0.027 eV和0.079 eV之间,呈较强的金属性,且具有直接带 关键词: 扶手椅型碳纳米管 周期边界条件(PBC) 超长模型 能带  相似文献   

12.
We show that the optical absorption spectra of boron nitride (BN) nanotubes are dominated by strongly bound excitons. Our first-principles calculations indicate that the binding energy for the first and dominant excitonic peak depends sensitively on the dimensionality of the system, varying from 0.7 eV in bulk hexagonal BN via 2.1 eV in the single sheet of BN to more than 3 eV in the hypothetical (2, 2) tube. The strongly localized nature of this exciton dictates the fast convergence of its binding energy with increasing tube diameter towards the sheet value. The absolute position of the first excitonic peak is almost independent of the tube radius and system dimensionality. This provides an explanation for the observed "optical gap" constancy for different tubes and bulk hexagonal BN.  相似文献   

13.
We report first-principles calculations of the effects of quasiparticle self-energy and electron-hole interaction on the optical properties of single-walled boron nitride nanotubes. Excitonic effects are shown to be even more important in BN nanotubes than in carbon nanotubes. Electron-hole interactions give rise to complexes of bright (and dark) excitons, which qualitatively alter the optical response. Excitons with a binding energy larger than 2 eV are found in the BN nanotubes. Moreover, unlike the carbon nanotubes, theory predicts that these exciton states are comprised of coherent supposition of transitions from several different subband pairs, giving rise to novel behaviors.  相似文献   

14.
Optical transitions in single-wall boron nitride nanotubes are investigated by means of optical absorption spectroscopy. Three absorption lines are observed. Two of them (at 4.45 and 5.5 eV) result from the quantification involved by the rolling up of the hexagonal boron nitride (h-BN) sheet. The nature of these lines is discussed, and two interpretations are proposed. A comparison with single-wall carbon nanotubes leads one to interpret these lines as transitions between pairs of van Hove singularities in the one-dimensional density of states of boron nitride single-wall nanotubes. But the confinement energy due to the rolling up of the h-BN sheet cannot explain a gap width of the boron nitride nanotubes below the h-BN gap. The low energy line is then attributed to the existence of a Frenkel exciton with a binding energy in the 1 eV range.  相似文献   

15.
Spatially resolved electron energy loss spectroscopy experiments have been performed in an electron microscope on several individual boron nitride (BN) single-, double-, and triple-walled nanotubes, whose diameters and number of shells have been carefully measured. In the low-loss region (from 2 to 50 eV) the spectra have been analyzed within the framework of the continuum dielectric theory, leading to the conclusion of a weak influence of out-of-plane contribution to the dielectric response of the tubes. The gap has been measured to be independent of the nanotubes geometry, and close to the in-plane gap value of hexagonal BN (5.8+/-0.2 eV).  相似文献   

16.
王艳丽  苏克和  颜红侠  王欣 《物理学报》2014,63(4):46101-046101
用密度泛函B3LYP/3-21G(d)方法,并利用周期边界条件,研究了C原子在不同位置掺杂的(n,n)型BN纳米管的结构与性质.揭示了几何结构特征、能量、稳定性和能带结构的变化规律.研究了C原子在B位或N位置分别掺杂的BN纳米管的模型(掺杂浓度x=1/(4n),n=3—9),部分B位掺杂管发生了变形,而所有N位掺杂管则几乎不变形,而且N位比B位的掺杂能更低(管更稳定),B位掺杂管的能隙为1.054—2.411 eV,N掺杂管的能隙为0.252—1.207 eV,所有掺杂管都是半导体,所有掺杂管都具有直接带隙.  相似文献   

17.
A systematic study has been done on the structural and electronic properties of carbon, boron nitride and aluminum nitride nanotubes with structure consisting of periodically distributed tetragonal (T ≡A2X2), hexagonal (H ≡A3X3) and dodecagonal (D ≡A6X6) (AX=C2, BN, AlN) cycles. The method has been performed using first-principles calculations based on density functional theory (DFT). The optimized lattice parameters, density of state (DOS) curves and band structure of THD-NTs are obtained for (3, 0) and (0, 2) types. Our calculation results indicate that carbon nanotubes of these types (THD-CNTs) behave as a metallic, but the boron nitride nanotubes (THD-BNNTs) (with a band gap of around 4 eV) as well as aluminum nitride nanotubes (THD-AlNNTs) (with a band gap of around 2.6 eV) behave as an semiconductor. The inequality in number of atoms in different directions is affected on structures and diameters of nanotubes and their walls curvature.  相似文献   

18.
The electrical properties of single-wall C, BN, and BC3 nanotubes in ideally rolled-up forms show a wide spectrum from truly metals to large band gap semiconductors. In the presence of radial deformations that collapse tubes, the electrical properties are severely modified such that metals turn into semiconductors and vice versa. Based on first-principles pseudopotential calculations, we find that metallic C nanotubes have a finite band gap if radial deformations break all mirror symmetries of the tubes, and that original finite gaps (∼0.5 eV) of semiconducting C and BC3 tubes are closed by collapsing deformations. In BN tubes, band gaps can be tuned in the range 2–5 eV. On the other hand, the band gaps of armchair BN and zigzag BC3 nanotubes are found to be insensitive to radial deformations. These new findings can be applied to design new types of nanotube-based functional devices using radial deformations.  相似文献   

19.
We investigate by means of a GGA + U implementation of density functional theory the electronic and structural properties of magnetic nanotubes composed of an iron oxide monolayer and (n,0) boron nitride (BN) nanotubes, with n ranging from 6 to 14. The formation energy per FeO molecule of FeO covered tubes is smaller than the formation energy of small FeO nanoparticles, which suggests that the FeO molecules may cover the BN nanotubes rather than aggregating locally. Both GGA (PBE) and Van der Waals functionals predict an optimal FeO-BN interlayer distance of 2.94 ?. Depending on the diameter of the tube, novel electronic properties for the FeO covered BN nanotubes were found. They can be semiconductors, intrinsic half-metals or semi-half-metals that can become half-metals if charged with either electrons or holes. Such results are important in the spintronics context.  相似文献   

20.
The structural, electronic and elastic properties of the cubic boron nitride (BN) compound are investigated by a first-principle pseudopotential method. The calculations show that the structural phase transition from the zinc-blende(ZB) structure to the rocksalt (RS) structure occurs at a transition pressure of 1088 GPa and with a volume reduction of 3.1%. Both the ZB and RS structures of BN have indirect gaps, with energy gaps of 4.80 eV and 2.11 eV, respectively. The positive pressure derivative of the indirect band gap (Γ-X) energy for the the ZB phase and the predicted ultrahigh metallization pressure are attributed to the absence of d occupations in the valence bands. The increase of the shear modulus with increasing pressure implies that the lattice stability becomes higher when BN is compressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号