首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We review the standard notion of Weyl system, which stems from the Weyl formulation of the canonical commutation relations of quantum mechanics, and propose an alternative definition based on the theory of projective representations. Next, we discuss some conceptual advantages of this alternative definition. Finally, we introduce a notion of physical equivalence of group representations and propose a further ‘purely conceptual’ definition of Weyl system based on this notion.  相似文献   

2.
Weak Weyl representations of the canonical commutation relation (CCR) with one degree of freedom are considered in relation to the theory of time operator in quantum mechanics. It is proven that there exists a general structure through which a weak Weyl representation can be constructed from a given weak Weyl representation. As a corollary, it is shown that a Weyl representation of the CCR can be constructed from a weak Weyl representation which satisfies some additional property. Some examples are given. The work is supported by the Grant-in-Aid No.17340032 for Scientific Research from Japan Society for the Promotion of Science (JSPS).  相似文献   

3.
We present a formalism of Galilean quantum mechanics in non-inertial reference frames and discuss its implications for the equivalence principle. This extension of quantum mechanics rests on the Galilean line group, the semidirect product of the real line and the group of analytic functions from the real line to the Euclidean group in three dimensions. This group provides transformations between all inertial and non-inertial reference frames and contains the Galilei group as a subgroup. We construct a certain class of unitary representations of the Galilean line group and show that these representations determine the structure of quantum mechanics in non-inertial reference frames. Our representations of the Galilean line group contain the usual unitary projective representations of the Galilei group, but have a more intricate cocycle structure. The transformation formula for the Hamiltonian under the Galilean line group shows that in a non-inertial reference frame it acquires a fictitious potential energy term that is proportional to the inertial mass, suggesting the equivalence of inertial mass and gravitational mass in quantum mechanics.  相似文献   

4.
W. N. Polyzou 《Few-Body Systems》2014,55(8-10):589-597
I discuss different formulations of the relativistic few-body problem with an emphasis on how they are related. I first discuss the implications of some of the differences with non-relativistic quantum mechanics. Then I point out that the principle of special relativity in quantum mechanics implies that the quantum theory has a Poincaré symmetry, which is realized by a unitary representation of the Poincaré group. This representation can always be decomposed into direct integrals of irreducible representations and the different formulations differ only in how these irreducible representations are realized. I discuss how these representations appear in different formulations of relativistic quantum mechanics and discuss some applications in each of these frameworks.  相似文献   

5.
Unitary/antiunitary projective representations of groups (i.e., projective representations of groups where unitary as well as antiunitary operators in a separable complex Hilbert space are considered) are studied in a systematic way. Particular emphasis is put on continuous unitary/antiunitary projective representations of a Polish group G. It is shown that every continuous unitary/antiunitary projective representation of G can be lifted to a Borel unitary/antiunitary multiplier representation of G (namely, to a representation “up to a factor” which is a Borel mapping) and that this, in turn, can be derived from a continuous unitary/antiunitary (ordinary) representation of a Polish group obtained from an extension of G by the multiplicative group of all complex numbers of absolute value 1.  相似文献   

6.
About 15 years ago, we (Heinz-Dietrich Doebner and I) proposed a special type of nonlinear modification of the usual Schrödinger time-evolution equation in quantum mechanics. Our equation was motivated by certain unitary representations of the group of diffeomorphisms of physical space, in the framework of either nonrelativistic local current algebra or quantum Borel kinematics. Subsequently, we developed this and related approaches to nonlinearity in quantum mechanics considerably further, to incorporate theories of measurement, groups of nonlinear gauge transformations, symmetry and invariance properties, unification of a large family of nonlinear perturbations, and possible physical contexts for quantum nonlinearity. Some of our results and highlights of some open questions are summarized.  相似文献   

7.
For the 3: (?1) resonance Penning trap, we describe the algebra of symmetries which turns out to be a non-Lie algebra with cubic commutation relations. The irreducible representations and coherent states of this algebra are constructed explicitly. The perturbing inhomogeneous magnetic field of Ioffe type, after double quantum averaging, generates an effective Hamiltonian of the trap. In the irreducible representation, this Hamiltonian becomes a second-order ordinary differential operator of the Heun type.  相似文献   

8.
Bound and scattering state Schrödinger functions of nonrelativistic quantum mechanics as representation matrix elements of space and time are embedded into residual representations of spacetime as generalizations of Feynman propagators. The representation invariants arise as singularities of rational representation functions in the complex energy and complex momentum plane. The homogeneous space GL(2)U(2) with rank 2, the orientation manifold of the unitary hypercharge-isospin group, is taken as model of nonlinear spacetime. Its representations are characterized by two continuous invariants whose ratio will be related to gauge field coupling constants as residues of the related representation functions. Invariants of product representations define unitary Poincaré group representations with masses for free particles in tangent Minkowski spacetime.  相似文献   

9.
This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle as well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelerations. We show that the incorporation of rotational accelerations requires a class of loop prolongations of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-established framework for implementing symmetry transformations in quantum mechanics.  相似文献   

10.
An analysis is presented of the cohomological underpinnings for the Weyl group of the canonical commutation relations on manifolds of constant negative curvature. Several uniqueness results are obtained leading from purely classical considerations to the group associated with the systems of imprimitivity of the orthodox approach to quantum mechanics.  相似文献   

11.
The quantum deformation of the group of motions of the plane and its Pontryagin dual are described in detail. It is shown that the Pontryagin dual is a quantum deformation of the group of transformations of the plane generated by translations and dilations. An explicit expression for the unitary bicharacter describing the Pontryagin duality is found. The Heisenberg commutation relations are written down.Supported in equal parts by the grant of the Ministry of Education of Poland and by Schweizerischer Nationalfonds.  相似文献   

12.
We study representation theory of the Weyl relations for infinitely many degrees of freedom. Differentiability of regular representations along rays in the parameter space E suggests to consider smooth structures on E. Switching from representations of CCR to group representations of the associated Heisenberg group over E we develop a framework for smooth representations of the Heisenberg group as an infinite dimensional Lie group. After careful inspection and translation of the necessary differential geometric input for Kirillov's orbit method we are able to construct a large class of smooth representations. These reproduce the Schr?dinger representation if E is finite dimensional. Received: 10 May 1996 / Accepted: 30 July 1996  相似文献   

13.
We introduce a twisted version of the Heisenberg double, constructed from a twisted Hopf algebra and a twisted pairing. We state a Stone–von Neumann type theorem for a natural Fock space representation of this twisted Heisenberg double and deduce the effect on the algebra of shifting the product and coproduct of the original twisted Hopf algebra. We conclude by showing that the quantum Weyl algebra, quantum Heisenberg algebras, and lattice Heisenberg algebras are all examples of the general construction.  相似文献   

14.
15.
The field theoretical formulation of quantum mechanics is used to consider the nonrelativistic multichannel scattering theory. With the help of appropriately constructed time dependent creation operators, Hilbert vectors are formed whose limits in time can be defined as multichannel scattering states in the usual sense. The existence of these states is proved under certain assumptions for the potential, by showing the convergence of the above mentioned operators. The commutation relations for the limits of these operators are given.  相似文献   

16.
The finite-dimensional quantum mechanics (FDQM) based on Weyl’s form of Heisenberg’s canonical commutation relations, developed for the case of one-dimensional space, is extended to three-dimensional space. This FDQM is applicable to the physics of particles confined to move within finite regions of space and is significantly different from the current quantum mechanics in the case of atomic and subatomic particles only when the region of confinement is extremely small—of the order of nuclear or even smaller dimensions. The configuration space of such a particle has a quantized eigenstructure with a characteristic dependence on its rest mass and dimension of the region of confinement, and the current Schrödinger-Heisenberg formalism of quantum mechanics becomes an asymptotic approximation of this FDQM. As an example, a spherical harmonic oscillator with a particular radius of confinement is considered.  相似文献   

17.
Motivated by previous work on high-energy quantum mechanics, a simple model is devised to study the internal geometry of hadron resonances. In this model we assume new basic canonical commutation relations between the (internal) coordinate and momentum operators of the hadronic quantum system. By systematically imposing Lie algebra commutation relations between these and other observables, we discuss the free and bound particle problems, identifying in each case the corresponding internal symmetries. For the bound particle problem, which models quark confinement, this symmetry turns out to be characterized by Dirac's two-oscillator representation of theO(3, 2) de Sitter group.  相似文献   

18.
We introduce the probability distributions describing quantum observables in conventional quantum mechanics and clarify their relations to the tomographic probability distributions describing quantum states. We derive the evolution equation for quantum observables (Heisenberg equation) in the probability representation and give examples of the spin-1/2 (qubit) states and the spin observables. We present quantum channels for qubits in the probability representation.  相似文献   

19.
Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg–Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg–Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.  相似文献   

20.
Non-Abelian quantum kinematics is applied to thePoincare group P + (1, 1),as an example of the quantization-through-the-symmetryapproach to quantum mechanics. Upon quantizing thegroup, generalized Heisenberg commutation relations are obtained, and aclosed Heisenberg–Weyl algebra follows. Then,according to the general theory, the three basicquantum-kinematic invariant operators are calculated;these afford the superselection rules for diagonalizing theincoherent rigged Hilbert space H(P + ) of the regularrepresentation. This paper examines only one of thesediagonalization schemes, while introducing a irreducible spacetime representation carried by isotopicplane-wave eigenvectors of two compatible superselectionoperators (which define a Poincare-invariant linear2-momentum). Thereafter, the principle of microcausality produces massive 2-spinor isotopic states in 1+ 1 Minkowski space. The Dirac equation is thus deducedwithin the quantum kinematic formalism, and the familiarJordan–Pauli propagation kernel in 2-dimensional spacetime is also obtained as a Hurwitzinvariant integral over the group manifold. The maininterest of this approach lies in the adoptedgroup-quantization technique, which is a strictlydeductive method and uses exclusively the assumed Poincaresymmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号