首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Lead-free piezoelectric ceramics (1−x)Bi0.5(Na0.82K0.18)0.5TiO3xNaSbO3 have been prepared by a conventional ceramics technique, and their microstructure and electrical properties have been investigated. The addition of NaSbO3 has no remarkable effect on the crystal structure within the studied doping content; however, an obvious change in microstructure took place. With increase in NaSbO3 content, the temperature from a ferroelectric to antiferroelectric phase transition increases, and the temperature for a transition from antiferroelectric phases to paraelectric phases changes insignificantly. Simultaneously, the temperature range between the rhombohedral phase transition point and the Curie temperature point becomes smaller. The piezoelectric properties significantly increase with increase in NaSbO3 content and the piezoelectric constant and electromechanical coupling factor attain maximum values of d33=160 pC/N and kp=0.333 at x=0.01. The results indicate that (1−x)Bi0.5(Na0.82K0.18)0.5TiO3xNaSbO3 ceramic is a promising lead-free piezoelectric candidate material.  相似文献   

2.
0.935(K0.5+xNa0.5+x)NbO3-0.065LiSbO3 lead-free piezoelectric ceramics were prepared by normal sintering, and their piezoelectric and dielectric properties were investigated by varying the compensating amount x of alkaline elements (Na and K) addition. It was found that the crystal structure changed from tetragonal to orthorhombic with increasing x from −0.010 to 0.010. An MPB was tailored by optimizing the alkaline elements contents. Enhanced electrical and electromechanical responses of d33=253 pC/N, kp=0.47, kt=0.45 and tanδ=0.027 were obtained in the ceramics with x=0.005. These excellent piezoelectric and electromechanical properties indicate that this system may be an attractive lead-free material for a wide range of electro-mechanical transducer applications.  相似文献   

3.
Lead-free (K0.5Na0.5)0.90Li0.06Sr0.02Nb(1−x)SbxO3 (KNLSN-Sbx) ceramics were synthesized by ordinary sintering technique. The compositional dependence of phase structure and electrical properties of the ceramics was systematically investigated. All samples possessed pure perovskite structure, showing room temperature symmetries of orthorhombic at x<0.01, coexistence of orthorhombic and tetragonal phases at x=0.01, and tetragonal at 0.02≤x≤0.05. The temperature of the polymorphic phase transition (PPT) was shifted to lower temperature and dielectric relaxor behavior was induced by increasing Sb content. The samples near the coexistence region (x=0.01) exhibited enhanced electrical properties: d33∼145 pC/N, kp∼38% and Pr∼20.4 μC/cm2.  相似文献   

4.
In this article, we report successful preparation of dense [(Na0.5K0.5)1−xSrx](Nb1−xTix)O3 (x=0.005-0.100) ceramics by ordinary sintering in air. The dependence of phase structure on doping content of SrO and TiO2 has been determined by the X-ray diffraction technique. It was found that the crystal structure changed from orthorhombic to tetragonal at x≈0.040. Dielectric study revealed that the dielectric relaxor behavior was induced by doping of SrO and TiO2 into (Na0.5K0.5)NbO3. The samples in the composition range from x=0.005 to 0.020 exhibited excellent electrical properties, piezoelectric constant of electromechanical planar and thickness coupling coefficients of kp=26.6-32.5% and kt=39.8-43.8%. The results show that the [(Na0.5K0.5)1−xSrx](Nb1−xTix)O3 ceramics are one of the promising lead-free materials for electromechanical transducer applications.  相似文献   

5.
Lead-free (Na0.5K0.5)NbO3-based piezoelectric ceramics were successfully fabricated by substituting with a small amount of BiFeO3 (BF). Difficulty in sintering of pure NKN ceramics can be eased by adding a few molar percent of BF, and the crystalline structure is also changed, leading to a morphotropic phase boundary (MPB) between ferroelectric orthorhombic and rhombohedral phases. The MPB exists near the 1-2 mol% BF-substituted NKN compositions, exhibiting enhanced ferroelectric, piezoelectric, and electromechanical properties of Pr=23.3 μC/cm2, d33=185 pC/N, and kp=46%, compared to an ordinarily sintered pure NKN ceramics. The MPB composition has a Curie temperature of ∼370 °C, comparable to that of some commercial PZT materials.  相似文献   

6.
0.979K0.5Na0.5Nb1‐xSbx O3‐0.021Bi0.5Na0.5TiO3 (KNNSx ‐BNT) lead‐free piezoelectric ceramics were fabricated by conventional solid state reaction technique, and their phase transition and electrical properties were studied. With the increase of x, the rhombohedral‐orthorhombic phase transition temperature of the ceramics increases. Finally, both the rhombohedral‐orthorhombic and orthorhombic‐tetragonal phase transitions of the ceramics were modified to be around room tempera‐ ture when about 6% Sb were substituted for the Nb site, resulting in the formation of a new phase boundary separating rhombohedral and tetragonal phases. The formation of the new phase boundary results in excellent properties for the ceramics, that is, the KNNS0.05‐BNT ceramic shows an enhancement in piezoelectric properties: d33 = 380 pC/N and kP = 0.438. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Piezoelectric ceramics with compositions of (0.90−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3-0.10PbZrO3, x=0.28, 0.31, 0.34, 0.37, 0.40 and 0.43, were prepared using the conventional columbite precursor method, and their structural phase transformation and piezoelectric behaviors near the morphotropic phase boundary (MPB) have been systematically investigated as a function of PbTiO3 content. X-ray diffraction (XRD) results demonstrate that the structure of the ceramics experiences a gradual transition process from rhombohedral phase to tetragonal phase with the increasing of PbTiO3 content, and that compositions with x=0.34-0.40 lie in the MPB region of this ternary system. A Raman spectra investigation of the ceramic samples testified to the transformation process of rhombohedral phase to tetragonal phase by comparing the relative intensities of tetragonal E(2TO1) mode and rhombohedral phase Rh mode. The structure information was also correlated to the parabola change of the piezoelectric constant; the maximum piezoelectric constants were obtained near the MPB region.  相似文献   

8.
In the study, in order to develop the lead-free piezoelectric ceramics for actuator, transformer and other electronic-devices application, (K0.5Na0.5)(Nb0.9+xTa0.1)O3 + 0.5 mol% CuO + 0.2 mol% MnO2 ceramics were prepared by conventional mixed oxide method. The effects of B-site non-stoichiometry in [(K0.5Na0.5)] [(Nb0.9+xTa0.1)O3] ceramics on microstructure and piezoelectric properties were investigated. The density, electromechanical coupling factor (kp), mechanical quality factor (Qm), piezoelectric constant (d33), TC and TO-T of NKNT ceramics with x = 0.0065 showed the optimum values of 4.58 g/cm3, 0.427, 1554, 109 pC/N, 373 °C and 226 °C, respectively, suitable for piezoelectric motor, and transformer applications.  相似文献   

9.
The structural and magnetic properties of Nd0.5−xPrxSr0.5MnO3 (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) system have been investigated. With the substitution of Pr in Nd0.5Sr0.5MnO3, it shows a gradual structure transformation from the Imma orthorhombic symmetry to the tetragonal I4/mcm phase, and the crystallographic transition remains incomplete, even in Pr0.5Sr0.5MnO3. A large bifurcation between zero-field-cooled (ZFC) and field-cooled (FC) susceptibility has been observed below Curie temperature (TC), which is characteristic of coexistence of ferromagnetism (FM) and antiferromagnetism (AFM) at low temperature region. The magnetization of Pr0.5Sr0.5MnO3 is larger than that of Nd0.5Sr0.5MnO3, while Nd0.5Sr0.5MnO3 with more CE-type AFM shows larger magnetization than Nd0.3Pr0.2Sr0.5MnO3, which mixed with CE-type (majority) and A-type (minority) AFM at low temperature, indicating that the magnetization of Nd0.5−xPrxSr0.5MnO3 system is affected by A-site disorder combined with orbital ordering of A-type AFM and CE-type AFM.  相似文献   

10.
This work presents a study of Na0.5Bi0.5TiO3 (NBT) by transmission electron microscopy in the 20-370 °C temperature range. A new orthorhombic intermediate phase between the rhombohedral and the tetragonal phases is proposed to account for the occurrence of (oee) superstructure spots. The phase transition from the rhombohedral to the orthorhombic phase occurs via a modulated phase formed by rhombohedral blocks and orthorhombic sheets. It is shown that these latter represent rhombohedral (0 1 0) twin planes. The modulated phase is proposed to explain the antiferroelectric and relaxor behaviors of NBT.  相似文献   

11.
Na1−xLixNbO3 ceramics with composition 0.05≤x≤0.30 were prepared by solid-state reaction method and sintered in the temperature range 1100-1150 °C. These ceramics were characterised by X-ray diffraction as well as dielectric permittivity measurements and Raman spectroscopy. Dielectric properties of ceramics belonging to the whole composition domain were investigated in a broad range of temperatures from 300 to 750 K and frequencies from 0.1 to 200 kHz. The Rietveld refinement powder X-ray diffraction analysis showed that these ceramics have a single phase of perovskite structure with orthorhombic symmetry for x≤0.15 and two phases coexistence of rhombohedral and orthorhombic above x=0.20. The evolution of the permittivity as a function of temperature and frequency showed that these ceramics Na1−xLixNbO3 with composition 0.05≤x≤0.15 present the classical ferroelectric character and the phase transition temperature TC increases as x content increases. The polarisation state was checked by pyroelectric and piezoelectric measurements. For x=0.05, the piezoelectric coefficient d31 is of 2pC/N. The evolution of the Raman spectra was studied as a function of temperatures and compositions. The results of the Raman spectroscopy study confirm our dielectric measurements, and they indicate clearly the transition from the polar ferroelectric phase to the non-polar paraelectric one.  相似文献   

12.
Ba[(Fe0.5Nb0.5)1−xTix]O3 (x=0.2,0.4,0.6,0.8,0.85,0.9 and 0.95) solid solutions were synthesized by a standard solid-state reaction technique. X-ray diffraction at room temperature and dielectric characteristics over a broad temperature and frequency range were evaluated systematically. The structure of Ba[(Fe0.5Nb0.5)1−xTix]O3 solid solutions changed from cubic to tetragonal with increasing x. A Debye-like dielectric relaxation following the Arrhenius law similar to that in Ba(Fe0.5Nb0.5)O3 was observed at lower temperature in the composition range 0.2≤x≤0.8, while the relaxor ferroelectric, diffused ferroelectric and normal ferroelectric behavior were observed for x=0.85,0.9 and 0.95, respectively. The process of the evolution of relaxor-like dielectric to ferroelectric suggested the changing from dilute polar micro-domains to polar micro-domains, polar micro/macro-domains and then polar macro-domains in the present ceramics.  相似文献   

13.
In this paper, effects of lead doping on the lattice response and phase transitions of Sr1−xPbxBi2Nb2O9 (x=0.0-0.5 in steps of 0.1) ferroelectric ceramics are reported. It is observed that structure attains more tetragonality with doping of lead up to 40%. Increased orthorhombic distortion is observed for undoped SBN and 50 at.% lead substituted SBN. Phase transitions for all samples were studied using Curie temperature measurements and are explained in terms of lattice response of these ceramics. Sample with x=0.5 shows decreased tetragonal strain and Curie temperature. Relationship of polarization with lattice response is discussed.  相似文献   

14.
Phase pure perovskite (1−xy)Pb(Ni1/3Nb2/3)O3-xPb(Zn1/3Nb2/3)O3-yPbTiO3 (PNN-PZN-PT) ferroelectric ceramics were prepared by conventional solid-state reaction method via a B-site oxide mixing route. The PNN-PZN-PT ceramics sintered at the optimized condition of 1185 °C for 2 h exhibit high relative density and rather homogenous microstructure. With the increase of PbTiO3 (PT) content, crystal structure and electrical properties of the synthesized PNN-PZN-PT ceramics exhibit successive phase transformation. A morphotropic phase boundary (MPB) is supposed to form in (0.9−x)PNN-0.1PZN-xPT at a region of x=32-36 mol% confirmed by X-ray diffraction (XRD) measurement and dielectric measurement. The MPB composition can be pictured as providing a “bridge” connecting rhombohedral ferroelectric (FE) phase and tetragonal one since crystal structure of the MPB composition is similar to both the rhombohedral and tetragonal lattices. Dielectric response of the sintered PNN-PZN-PT ceramics also exhibits successive phase-transition character. 0.64PNN-0.1PZN-0.26PT exhibits broad, diffused and frequency dependent dielectric peaks indicating a character of diffused FE-paraelectric (PE) phase transition of relaxor ferroelectrics and 0.40PNN-0.1PZN-0.50PT exhibits narrow, sharp and frequency independent dielectric peaks indicating a character of first-order FE-PE phase transition of normal ferroelectrics. The FE-PE phase transition of 0.56PNN-0.1PZN-0.34PT is nearly first-order with some diffused character, which also exhibits the largest value of piezoelectric constant d33 of 462pC/N.  相似文献   

15.
The microwave dielectric properties of La1-xBx(Mg0.5Sn0.5)O3 ceramics were examined with a view to their exploitation for mobile communication. The La1-xBx(Mg0.5Sn0.5)O3 ceramics were prepared by the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the La0.995B0.005(Mg0.5Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. A maximum apparent density of 6.58 g/cm3, a dielectric constant (εr) of 19.8, a quality factor (Q × f) of 41,800 GHz, and a temperature coefficient of resonant frequency (τf) of −86 ppm/°C were obtained for La0.995B0.005(Mg0.5Sn0.5)O3 ceramics that were sintered at 1500 °C for 4 h.  相似文献   

16.
(K0.5Na0.5)NbO3 (KNN) based lead free ceramics have been fabricated by a solid state reaction. In this work, LiSbO3 (LS) modified KNN based ceramics were sintered at atmospheric pressure and high density (>96% theoretical) was obtained. The detailed elastic, dielectric, piezoelectric and electromechanical properties were characterized by using the resonance technique combined with the ultrasonic method. The full set of material constants for the obtained polycrystalline ceramics were determined and compared to the pure hot pressed KNN counterpart. KNN-LS polycrystalline ceramic was found to have higher elastic compliance, dielectric permittivity and piezoelectric strain coefficients, but lower mechanical quality factor, when compared to pure KNN, exhibiting a “softening” behavior. However, a high coercive field (∼17 kV/cm) was found for the LS modified KNN material. The properties as a function of temperature were determined in the range of −50-250 °C, showing a polymorphic phase transition near room temperature, giving rise to improved piezoelectric behavior.  相似文献   

17.
(Na0.5Bix)0.93Ba0.07TiO3 (x=0.500-0.492) ceramics were prepared by a citrate method, and the structure and electrical properties of the ceramics were investigated with respect to the amount of Bi deficiency. It was detected that the Bi deficiency had a considerable impact on the crystal structure and microstructure. The inspection of both the temperature dependence of the dielectric properties (free permittivity ε33T/ε0 and dielectric loss tan δ) and the evolution of the polarization-electrical field (P-E) hysteresis loops with measuring temperature suggests that the Bi deficiency served to increase the depolarization temperature (Td). The Bi deficiency led to an increase in the coercive field (Ec) and mechanical quality factor (Qm) together with a decrease in the remanent polarization (Pr) and piezoelectric constants (d33). The variation of the structure and electrical properties with Bi deficiency amount was qualitatively interpreted in terms of the formation of Bi and oxygen vacancies in the Bi-deficient specimens. This research indicates the importance of adequately controlling Bi stoichiometry of (Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics in obtaining the desired ferroelectric and piezoelectric properties.  相似文献   

18.
Lead-free (Ba1−xCax)(Ti0.95Zr0.05)O3 (x = 0.05-0.40) (BCZT) ceramics were prepared by solid-state reaction technique. XRD results show that the samples in the composition range of 0.05 ≤ x ≤ 0.25 exhibit pure perovskite structures and undergo a polymorphic phase transitions from orthorhombic to tetragonal phase around room temperature. The biphasic structures are detected at x ≥ 0.30 and the dielectric peaks become broad and dielectric constants decrease with increasing Ca content. Ca replacement at Ba site leads to diffuseness, whereas Ca occupancy at Ti site leads to decrease of the Tc.  相似文献   

19.
[Li0.03(K0.48Na0.52)0.97](Nb0.97Sb0.03)O3-(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 [(1−x)LKNNS-xBCTZ] lead-free piezoelectric ceramics were prepared by the conventional solid state method, and effects of BCTZ content on the piezoelectric properties of LKNNS ceramics were mainly investigated. A stable solid solution has been formed between LKNNS and BCTZ, and a morphotropic phase boundary of (1−x)LKNNS-xBCTZ ceramics is identified in the range of 0 < x ≤ 0.02. The Curie temperature of (1−x)LKNNS-xBCTZ ceramics decreases with increasing BCTZ content. A higher ?r value and a lower tan δ value are demonstrated for the (1−x)LKNNS-xBCTZ ceramic with x = 0.02. The (1−x)LKNNS-xBCTZ ceramic with x = 0.02 has an enhanced electrical behavior of d33 ∼ 237 pC/N, kp ∼ 48.6%, ?r ∼ 1451, tan δ ∼ 0.037, and Tc ∼ 335 °C. As a result, (1−x)LKNNS-xBCTZ ceramics are promising candidate materials for the field of lead-free piezoelectric materials.  相似文献   

20.
Lead-free piezoelectric ceramics (1 − x − y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBiGaO3 have been fabricated by an ordinary sintering technique, and their structure and electrical properties and depolarization temperature have been studied. The results of X-ray diffraction reveal that Bi0.5K0.5TiO3 and BiGaO3 diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure. An obvious change in microstructure with increasing concentration of Bi0.5K0.5TiO3 and BiGaO3 was observed. The piezoelectric constant d33 and the electromechanical coupling factor kp of the ceramics attain maximum values of 165 pC/N and 0.346 at y = 0.01(x = 0.18) and x = 0.21(y = 0.01), respectively. The temperature dependence of dielectric constant indicates an obvious relaxor characteristic with strong frequency dependence of dielectric constant. The depolarization temperature decreased with increasing content of BiGaO3 and first decreases and then increases with increasing amount of Bi0.5K0.5TiO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号